

610 N. Whitney Way, Suite 160 Madison, Wisconsin 53705, USA Phone No: (608) 238-2171 Fax No: (608) 238-9241 info@powline.com http://www.powline.com

Linear Elastic Cable Model With Creep Proportional to Tension

This document illustrates differences in the way creep is handled in the "Linear elastic with permanent stretch due to creep proportional to creep weather case tension" cable model compared to cable models available in earlier versions. You may download a PLS-CADD/Lite project for the example used in this discussion from http://www.powline.com/technotes/creep_proportional_to_tension.bak should you want to experiment with this yourself. Our thanks to Mr. Greg Chapman of Ergon Energy for his contributions to the development of this cable model and this tech note.

There are three types of cable models that are available for modeling conductors in PLS-CADD. The first and most accurate is the **non-linear cable model** which uses separate polynomials for initial and creep behavior for inner and outer materials. The second is the **improved linear cable model** which models permanent stretch due to creep proportional to the creep weather case tension. The third is the **linear cable model** with permanent stretch due to creep specified as a user input temperature increase.

As shown below in Figure 1, the improved linear cable model more accurately reflects the sag of the non-linear cable model in the creep condition at various tensions. You can see how at 22 kN all three cables are very similar in their creep display since this is the tension selected when stringing the conductor. However when the cables are strung at 44 kN instead of 22 kN, you can see how the new improved linear cable model more accurately reflects the creep sag of the non-linear cable model.

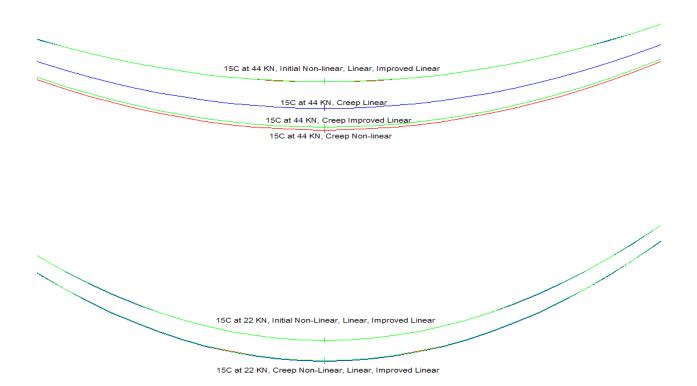
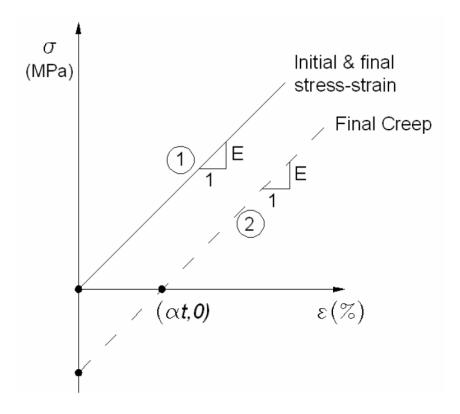



Figure 1

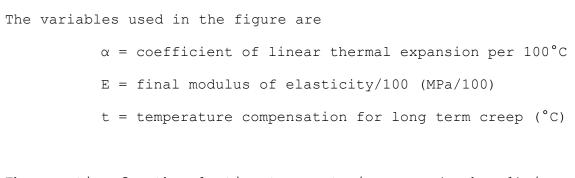

Linear Cable Models vs. Non-Linear Cable Model

Figure 2 below illustrates the method of modeling long term creep by a temperature shift such that the plastic creep is modeled as thermal strain which is the model that was used originally in PLS-CADD for a linear cable.

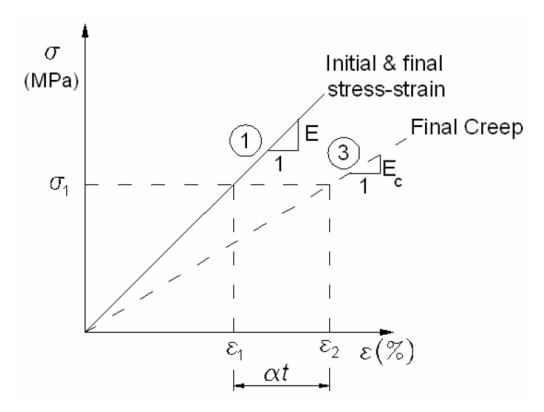
Linear Cable Model Long Term Creep Modeled as Thermal Strain


```
The equation for the elastic stress-strain curve (number 1) is

\sigma = a_0 + a_1 \varepsilon

where a_0 = 0 and a_1 = \varepsilon

Copyright © Power Line Systems, Inc. 2010 3
```


while the equation for the creep curve number (2) is

 $\sigma_c = b_0 + b_1 \epsilon$

where $b_0 = -E\alpha t$ and $b_1 = E$

The primary disadvantage to this model is that a constant allowance is made for creep that is not related to the value of the stringing tension.

The other more accurate approach is to pro-rata the creep as shown in Figure 3 below.

Improved Linear Cable Model Long Term Creep Modeled as Proportional to Tension

From initial curve number (1)

 $E = \sigma_1 / \epsilon_1$

- $E_c = \sigma_1 / \epsilon_2$
- $\varepsilon_2 = \varepsilon_1 + \alpha t$

Copyright © Power Line Systems, Inc. 2010

Solving for $E_{\rm c}$ gives

$$E_c = 1/(\frac{1}{E} + \frac{\alpha t}{\sigma 1})$$

Therefore the equation for the final creep curve number (3) is

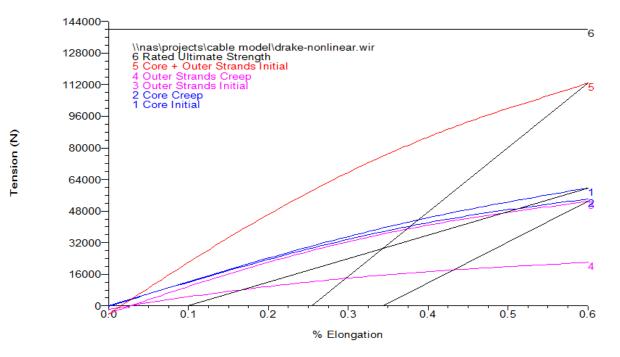
 $\sigma_c = c_0 + c_1 \varepsilon$

where

 $c_0 = 0$

 $c_1 = E_c$

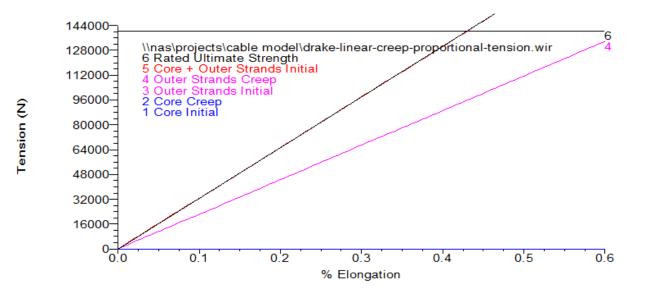
" σ_1 " is the constant value of stress that produces a creep strain equivalent to t°C. It would normally be the "full" tension value of stress where experimental values of creep strain have been evaluated.


It is important that "t" represents only the metallurgical value of creep strain; the elastic strain, thermal strain, and strand settling strain components having been accounted for in the test results.

The best method of cable modeling is to include the polynomial coefficients for the non-linear stress-strain curve and for the non-linear creep curve.

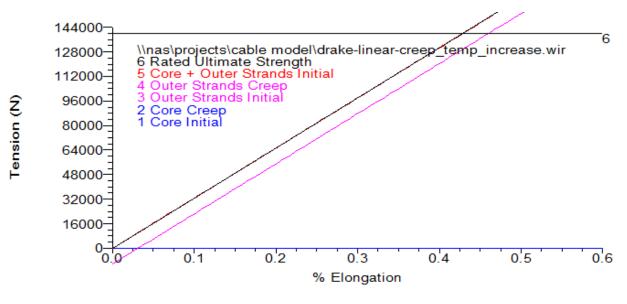
Below are the cable data input dialog from PLS-CADD including a graph of the % Elongation vs. Tension for the three different cable types as used in the example file that can be downloaded above.

Cable Data	2 S									
Cable Model © Nonlinear cable model (separate polynomials for initial and creep beh © Linear elastic with permanent stretch due to creep proportional to cre © Linear elastic with permanent stretch due to creep specified as a use	eep weather case tension									
Name \\nas\projects\cable model\drake-nonlinear.w	vir									
Description DRAKE STANDARD ACSR 26/7 795.0 KCM	DRAKE STANDARD ACSR 26/7 795.0 KCMILS									
Stock Number										
Cross section area (mm^2) 468.644 Unit weight (N/m) 15.9657 Outside diameter (mm) 28.1432 Ultimate tension (N) 140119	Number of independent wires (1 unless messenger									
	Conductor is a J-Power Systems GAP type conductor strung with core supporting all tension.									
Temperature at which strand data below obtained (deg C) 21.1111										
Outer Strands Final modulus of elasticity (see note below) (MPa/100) 441.264	Core Strands (if different from outer strands)									
	Final modulus of elasticity (see note below) (MPa/100) 255.106									
Thermal expansion coeff. (/100 deg) 0.002304 Polynomial coefficients (all strains in %, stresses in MPa, see note	Thermal expansion coeff. (/100 deg) 0.001152									
a0 a1 a2 a3 a4	Polynomial coefficients fall strains in %, stresses in MPa, see note b0 b1 b2 b3 b4									
Stress-strain -8.36333 305.493 -96.5566 -259.367 211.503	Stress-strain -0.4778C 266.337 27.5659 -315.175 192.308									
c0 c1 c2 c3 c4	d0 d1 d2 d3 d4									
Creep -3.7562E 147.732 -129.912 37.8866	Creep 0.32474: 249.668 84.1255 -499.124 319.489									
Note: Final modulus, stress-strain and creep are actual material values multiplied by ratio of outer strand area to total area.	Note: Final modulus, stress-strain and creep are actual material values multiplied by ratio of core strand area to total area.									
Bimetallic Conductor Model										
point at which the aluminum is no longer under tension.	um is used as the outer material over a steel core there is a temperature transition									
Select the behavior you want for temperatures above the transition point	VirtualStress = ActualStress * Ao / At Ao = cross section area of outer strands									
Use behavior from Criteria/Bimetallic Conductor Model	At = total cross section area of outer strainds At = total cross section area of entire conductor (outer + inner strands)									
Aluminum does not take compression at high temperature (Bird Cage)	Maximum virtual compressive stress (MPa) 68947.4									
Aluminum can go into compression at high temperature	Maximum virtual compressive stress [MPa] [68947.4									
Thermal Rating Properties	Emissivity coefficient 0.5									
Resistance at two different temperatures	Solar absorption coefficient 0.5									
Resistance (0hm/km) 0.0728247 at (deg C) 25	Outer strands heat capacity (Watt-s/m-deg C) 1064.19									
Resistance (Ohm/km) 0.0868677 at (deg C) 75	Core heat capacity (Watt-s/m-deg C) 243.992									
Generate Coefficients from points on stress-strain curve Composit	te cable properties OK Cancel									


Nonlinear Cable Model Long Term Creep Modeled with Polynomial

Nonlinear Cable Model Long Term Creep Modeled with Polynomial

Cable Data										9	? <mark>x</mark>
Cable Model O Nonlinear cable mod Linear elastic with pe Linear elastic with pe	ermanent stre	tch due to creep	proportio	nal to cre	ep weather case tensio	n)				
Name	\\nas\proje	ects\cable model\	drake-lin	ear-creep	-proportional-tension.wi	ſ					
Description	DRAKE ST	DRAKE STANDARD ACSR 26/7 795.0 KCMILS									
Stock Number											
Cross section area (mm^2)	468.644	Unit weight	(N/m)	15.9657	Number of indepe	ndent wire	s (1 unles	s messen	ner	1	
Outside diameter (mm)	28.1432	Ultimate tensior	n (N)	140119	supporting other v	vires with a	a spacer)		30.		
Temperature shift used to model long term creep (deg C) 16.6667				16.6667	Conductor is a		Systems 6	GAP type (conductor	strung with	core
Tension at which temperate	ure shift abov	/e applies	(N)	22000	supporting all	tension.					
Temperature at which stran	id data belov	v obtained	(deg C)								
Outer Strands Final modulus of elasticity (s Thermal expansion coeff.	see note bela	ow) (MPa/100 (/100 dec	·		- Core Strands (if differe Final modulus of elas Thermal expansion c	ticity (see r		w) (MF	Pa/100)		
Polynomial coefficients (all :	strains in %, :	· · · · · · · · · · · · · · · · · · ·	"		Polynomial coefficien		ns in % st			note	
al	al	a2 a3	a	4		ЬО	Ь1	<u>b2</u>	b3	b4	
Stress-strain	696.369	1 1			Stress-strain						
CO Creep	c1 475.244	c2 c3	0	4	Creep	dO	d1	d2	d3	d4	
Note: Final modulus, stress-strain and creep are actual material values multiplied by ratio of outer strand area to total area.					Note: Final modulus, stress-strain and creep are actual material values multiplied by ratio of core strand area to total area.						
Bimetallic Conductor Mode Aluminum has a larger the point at which the aluminu Select the behavior you v Use behavior from Crit	rmal expansi m is no long vant for temp	er under tension. peratures above th	ne transit		m is used as the outer r VirtualStress Ao = cross s	: = ActualS	itress * Ac	o / At	e is a temp	erature tran	sition
 Aluminum does not tak 				d Cage)	At = total cro	oss section	i area of e	entire conc	ductor (out		
Aluminum can go into o	compression	at high temperatu	re		Maximum vi	rtual comp	ressive st	ress		(MPa) 689	47.4
Thermal Rating Properties					_				ī).5	
	Resistance at two different temperatures				Emissivity coencient						
Resistance (Ohm/km) ⁽											
Resistance (Ohm/km) 0.0868677 at (deg C) 75 Outer strands heat capacity (Watt-s/m-deg C) 1064.19											
Core heat capacity (Watt-s/m-deg C) 243.992											
Generate Coefficients from	m points on s	tress-strain curve		Composit	e cable properties		OK	Cance			


Improved Linear Cable Model Long Term Creep Modeled as Proportional to Tension

Improved Linear Cable Model Long Term Creep Modeled as Proportional to Tension

able Data										(Second) 23
Cable Model Nonlinear cable mod Linear elastic with pe Linear elastic with pe	rmanent stre	tch due to creep (proportio	nal to cre	ep weather case tensio	on					
Name \\\nas\projects\cable model\drake-linear-creep_temp_increase.wir											
Description	on DRAKE STANDARD ACSR 26/7 795.0 KCMILS										
Stock Number											
Cross section area (mm^2)	468.644	Unit weight	(N/m)	15.9657	Number of indepe	endent wire	s (1 unles	s messeng	jer	1	
Outside diameter (mm)	28.1432	Ultimate tensior	י (N)	140119	supporting other v	wires with a	spacer)				
Temperature shift used to n	nodel long te	rm creep	(deg C)	16.6667	Conductor is a supporting all		Gystems (iAP type c	onductor st	rung with (core
Temperature at which stran	id data belov	v obtained	(deg C)								
Outer Strands Final modulus of elasticity (s	oo noto hali	w) (MPa/100	0 696 36	9	Core Strands (if differe			·	- 4000		
Thermal expansion coeff.	see note Deit	(/100 deg	·		Final modulus of elas		note belov	· ·	a/100)		
Polynomial coefficients (all :	strains in %	· 2	·	,013	Thermal expansion c Polynomial coefficien		na in Vank		10 deg)	to the	
aO	al	a2 a3	a	4	-	b0	b1	b2	b3	b4	
Stress-strain	696.369				Stress-strain						
Creep -21 8/	c1 425 696.369		C	4		0	d1	d2	d3	d4	
Note: Final modulus, stress- multiplied by ratio of outer st	Creep Note: Final modulus, stress-strain and creep are actual material values multiplied by ratio of core strand area to total area.										
Bimetallic Conductor Mode Aluminum has a larger the	rmal expansi		n steel. I	f Aluminur	m is used as the outer r	material ov	er a steel	core there	is a temper	ature trans	sition
point at which the aluminu Select the behavior you v Use behavior from Crite Aluminum does not tak	- vant for temp eria/Bimetalli	eratures above th c Conductor Mode	el		VirtualStress Ao = cross s At = total cro	ection are	a of outer	strands			
🔘 Aluminum can go into d	compression	at high temperatu	re							/Pa) 6894	47.4
Thermal Rating Properties									0.5		
Resistance at two different	· · ·				Emissivity coencient						
Resistance (Ohm/km)					Solar absorption coefficient 0.5				_		
Resistance (Ohm/km) 0.0868677 at (deg C) 75					Outer strands heat capacity (Watt-s/m-deg C) 1064.19						
					Core heat capac	bity		(Watt-s/m	n-deg C) 243	3.992	
Generate Coefficients from	n points on s	tress-strain curve		Composite	e cable properties		OK	Cance			

Linear Cable Model Long Term Creep Modeled as Temperature Shift

Linear Cable Model Long Term Creep Modeled as Temperature Shift