ADVANCED PLS SOFTWARE USE IN SOUTH AFRICA

©Eskom TRANS-AFRICA PROJECTS

Trans-Africa Projects (TAP) is a design consultancy

based in South Africa.

Shareholding:

TAP has the capacity to supply:

- Power Network Engineering and
- **Project Management Services**

on voltage levels ranging from 11kV to 765kV.

We are also the agents for **POWER LINE** in Southern Africa.

®Eskom BACKGROUND

A bit about me:

- Structural Engineer
- Line Designer with TAP ≈ 3 years
- Constant exposure to PLS software
- Recently started providing PLS training courses
- Hence my presence here at the ATUG meeting

® €skom CONTENTS

An overview of some of the more interesting projects in which we have used PLS suite of software.

- Invisible Tower
- Long-Span Crossing
- Caprivi Link Interconnector (Namibia)
- Bent monopoles
- Sculpture Towers

® Eskom INVISIBLE TOWER

Project background:

Challenging 400kV line which TAP designed in the Western Cape of South Africa

- Close proximity to:
 - Existing 66kV and 132kV lines
 - Bulk services pipelines
 - Highway servitudes
 - Residential areas
 - Informal Settlements

- Environmental challenges:
 - Poor/sandy soils
 - Red data species
 - Wetlands
 - Vineyards
 - Mountainous areas

® Eskom INVISIBLE TOWER

The line crossed a steep mountain ridge, right next to public viewing area. The main design requirement was:

Limit the Visual Impact of the line crossing the ridge.

This was eventually achieved with by designing and installing the first Catenary structure in South Africa:

- LIDAR survey accurately determine relative elevations
- Integration between PLS-CADD & PLS-TOWER
- 1 chance to get it right Not possible to test the structure

(® Eskom INVISIBLE TOWER

(Eskom LONG SPAN CROSSING

A number of design challenges faced by Eskom on the project, included the crossing of a 225m deep, 1500m wide valley in the Addo National Park.

The design thus enabled the elimination of tower construction on the mountain slopes, in relatively difficult and environmentally sensitive terrain.

(® Eskom LONG SPAN CROSSING

- Lines supported by single structures on either end
- Time and budget constraints:
 - Existing designs were assessed for suitability
 - Using sophisticated FEM modelling in PLS TOWER and PLS **CADD**

(C) Eskom LONG SPAN CROSSING

Design adaptations:

- Increased wind loading
 - Method 4 structure models with Level 4 cable models
 - Increased loading due to terrain
- Line and Phase spacing
 - Line spacing 100m (asynchronous conductor movement)
 - The centre phase was raised by increasing regulation tension by 2%

CAPRIVI LINK INTERCONNECTOR

Interconnector link between Zimbabwe, Zambia, Botswana and Namibia (ZIZABONA).

Phase 1 of the project was the ±350kV DC Line.

Project highlights:

- 950km (80m servitude)
- Crossrope and self supporting towers designed and tested in South Africa
- First use of HVDC Light technology on long OHTL
- Cost per km ≈ USD \$ 0.2 million / km
- Up 22 structures erected per day

CAPRIVI LINK

PLS software was instrumental in:

- PLS TOWER used to optimise structure designs
- PLS CADD Optimum Spotting reduced costs further.

® Eskom BENT MONOPOLES

531 Series of Monopoles:

- Only 400kV poles in South Africa
- Largest Poles for OHTL in SA (CAH up to 38m)
- Tapered steel poles
- Varying wall thicknesses

The Angle Strain Poles are Bent!

- Joint slip has occurred not just deflections
- Low jacking forces
- Poor fabrication tolerances
- Galvanizing? Loss of aesthetics

® Eskom BENT MONOPOLES

Investigating if we have structural issues with the resulting "bent" poles

- PLS-CADD Line Profile & Method 4 pole structures to determine tip deflection under **EDT** conditions
- 3D Survey of the poles
- This shows what the permanent joint slip is at each slip joint
- Create the imperfect geometry pole model in **PLS POLE**
- Re-import into Profile & determine if any structures are now over-utlised

© Eskom SCULPTURE TOWERS

Sometimes its nice to add a bit of flair

Convince the financial side of the business

We have played around with a Arch Tower

®Eskom QUESTIONS

Thank you very much!

Any questions?

Graeme Louw Line Design Engineer | Trans-Africa Projects (Pty) Ltd

Tel: +27 21 914 3813 | Mobile: +27 72 402 6010 | Email: graeme@taprojects.co.za