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A View of Sag: Sag vs Temperature PlotA View of Sag: Sag vs. Temperature Plot

SA = stress in aluminum.

SA = 0, no compression. 
This is how sag-tension 
programs “think.”

No Birdcaging. IE: SA = ∞

At SA = -15 MPa, Sag 
f S t ierror from Sag-tension 

Program in about 1 foot 
at all temperatures above 
the knee point.



A View of Stress-StrainA View of Stress Strain
A: a point on the 
composite (core + Al)composite (core + Al) 
initial curve.

B: a point in the core 
initial curveinitial curve.

C: A point on the core 
final curve.

D: A point on the 
composite final curve.

If there were NOIf there were NO 
compression stresses in 
the Al, C and D would be 
on the same line.

The C-D separation 
displays Al compression.



CEA Report 78-93CEA Report 78 93
Report has three 
parts: I II IIIparts: I, II, III

Most of Parts I and 
II are provided to 
you as PDFsyou as PDFs. 

Report produced a 
new Sag-Tension 
computer programcomputer program, 
STESS.

STESS was written 
to explore theto explore the 
compressed 
aluminum 
characteristic of 
ACSRACSR.



The Compression PrincipleThe Compression Principle
Top: at some temperature, the p p
Al and core are the same 
length.

2nd: With heat applied, the Al 
expands “more” than the core.

3rd: BUT, the two metals are 
locked together at suspension 
clamps and dead ends causing 
Al compression and an equal 
tension in the core.

Bottom: If pushed hard enough, 
the helical Al strands (columns) 
will collapse (birdcage). IE: they 
do NOT carry infinite stress. 



CEA Report ConclusionCEA Report Conclusion

The large variance (6 to 12 MPa) is largely attributed to the variances in conductor design 
(layers and lay lengths), manufacturing variances (loose or tight stranding).(layers and lay lengths), manufacturing variances (loose or tight stranding).

In other words, these are things beyond your control of your knowledge on a reel-for-reel 
basis. Therefore, approximating at 10 MPa (1,450 psi) is the best you can know. 



But Chuck does not agreeBut Chuck does not agree…
In the Report titled: 

“Assessment of the Nigol Barrett Theory of Compression Stress in theAssessment of the Nigol-Barrett Theory of Compression Stress in the 
Aluminum Part of ACSR Due to Maximum Loading”

C. B. Rawlins (Chuck!)

The “aluminum compression” values obtained “by the calculations herein” are shown inThe aluminum compression  values obtained by the calculations herein  are shown in 
MPa in the table below for the 26/7 and several other strandings.

Stranding            50% RS Max 70% RS Max
18/1 0.29 0.51
26/7 0.33 0.56
30/7 0.36 0.58
45/7 0.43 0.70
54/7 0.41 0.66

All values are far smaller 
than the CEA’s 6 to 12 MPa

84/19 0.37 0.76

… the …CEA… rationale is qualitatively sound.  However, the values… are 
insignificant and can have no practical impact in sag tension behavior.



What Does Chuck Say?What Does Chuck Say?



Stranding PracticesStranding Practices

For example…

These stresses are in the right ballpark for compatibility with the CEA report.



How clear-cut is the issue?How clear cut is the issue?

Pre-War: 2 or 39 samples showed pre-stressPre War:    2 or 39 samples showed pre stress

Post-War:  20 or 52 samples showed pre-stress 
(includes some pre-War samples)



Other Contributing FactorsOther Contributing Factors
Modulus of Elasticity changes with:Modulus of Elasticity changes with:

Lay Length of layer
TemperatureTemperature
Whether in tension or compression



Chuck’s Stress-Strain PlotChuck s Stress Strain Plot
Notice that the 
compressioncompression 
creates a final, 
high temperature 
curve of a new 
l th thslope rather than 

offset and parallel 
as CEA reported.



Chuck’s Sag-Temperature PlotChuck s Sag Temperature Plot
Notice that the 
computer program 

d t t th t tunder states the test-
measured sag by 
about a foot. 

All of the intermediate 
plots are factors that 
try to account for the 
difference as perdifference, as per 
Chuck.



Chuck’s ConclusionChuck s Conclusion

Chuck is pretty adamant that his understanding of the sources 
f l i i t d th t th CEA tof aluminum compression are correct and that the CEA report 

is wrong.

Despite the difficulty in learning more, as noted in his work, p y g , ,
our industry should consider putting effort into the subject 
sometime. Until then, we have these two sources of 
information “out there” without a discerning opinion having 
been soughtbeen sought.



My Conclusions – as a line engineerMy Conclusions – as a line engineer

Things have changed, as Chuck noted.g g
We make the wires differently since the 50s
Our analysis method is computerized but not 
updated to account for the fact that…updated to account for the fact that… 
We use the wires differently (hotter) and are in 
uncharted territory relative to the method.

Wires are more complicated than our modelWires are more complicated than our model.
Wires characteristics are more variable that 
we will ever track.
Therefore…

Account for the understated sag as best you can.



Sadness ReignsSadness Reigns
Free Market competition trumps TechnologyFree Market competition trumps Technology 

STESS is a great computer programSTESS is a great computer program
that will never see the light of day.

SAG10 i tt dSAG10 is a pretty good program 
that will see limited use

PLS CADD th k t ith itPLS-CADD owns the market with its 
integrated sag-tension module.



In SAG10 (Alcoa’s program now with Southwire)In SAG10 (Alcoa s program, now with Southwire)

You can as an option account forYou can, as an option account for 
aluminum compression and generate 
the excess sag at higher temperaturesg g p

The program does so in full complianceThe program does so in full compliance 
with Chuck’s work, as presented here.



In PLS-CADDIn PLS CADD…
You can set the compression limit toYou can set the compression limit to 
whatever you like.

The model mimics the CEA mechanics.
As of version 9.30, there are two input 
locations. The default value in one location 
is “infinity” and that overstates HT sag asis infinity  and that overstates HT sag as 
much as can be done. Change that!
Since the compression limit… OR IS IT..
Since the built-in stresses are highly variable
(0 to 12 MPa, 18?) and so on, 
consider thisconsider this…



Aristotle said (so they say I wasn’t there)Aristotle said…  (so they say. I wasn t there)

“It is the mark of an instructed mind to rest 
satisfied with the degree of precision which thesatisfied with the degree of precision which the 

nature of the subject admits and not to seek 
exactness when only an approximation of theexactness when only an approximation of the 

truth is possible.”



If we listen to AristotleIf we listen to Aristotle…
Do NOT sweat the details of what the limit 
is. Use 1.5 Ksi to be conservative or 1.2 
Ksi to be less conservative. 

You are arguing over less than 1 foot of sag with your choice 
and you will NEVER predict reality better than that with hot 
ACSRACSR.

BTW… this behavior should apply to any 
bi-material conductor not just to ACSRbi-material conductor, not just to ACSR. 

However, the degree of compression will arguably vary 
depending on the cause of the behavior – because that is 
still unresolved.
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Assessment of the Nigol-Barrett Theory of Compression Stress in the Aluminum Part of 

ACSR Due to Maximum Loading 

 

C. B. Rawlins 

 

Introduction 

 

     In his written discussion of Rawlins' IEEE paper on mill effects [1], Dr. Barrett gives 

the most extensive statement yet of the suggested source of compression stress in the 

aluminum of ACSR [2]:   

     "The inner aluminum layer has a smaller lay angle than the outer layer.  My detailed 

model shows that this results in a higher elastic modulus and higher stress on the inner 

layer under most conditions.  This, in turn, results in larger permanent elongation of the 

inner layer during prestress or creep.  The inner layer therefore normally 'goes slack' 

before the outer layer upon approaching birdcaging situations." 

     This description is of interest because it offers justification for the existence of 

compressive stress in the aluminum in the slack aluminum leg of the final stress strain 

curve of ACSR following loading to a high tension.  This compressive stress, AK , is 

shown in Fig. 1.  It comes about, during unloading from maximum tension, when the net 

tension in the aluminum reaches zero (at P ) before the pressure of the aluminum layers 

on the core reaches zero (at F ).  When that pressure passes through zero the aluminum 

part of the conductor becomes free to dilate away from the core and the aluminum 

incremental modulus changes from a high value to a quite low one.  The knee point of the 

final stress strain curve occurs at this point.  Dr. Barrett's statement seeks to explain why  

F P  .   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1   Compression in aluminum in final composite stress strain curve 

 

Explanation of Separation of Kneepoint from Zero Tension Point 

 

     The essence of Dr. Barrett's explanation is that the inner aluminum layer or layers 

experience greater plastic strain during high tension loading of the conductor than the 

outer layer because the inner layers have shallower angles of lay than the outer.  The 

greater plastic strain of the inner layer causes it to have less stress when the strain in the 
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conductor is reduced. The inner layers are then forced into compression when they pass 

zero stress because the outer layer is still in tension and constrains the inner layers from 

expanding radially. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2  Stresses and strains in inner and outer layers 

 

     This argument can be put in quantitative terms by reference to Fig. 2, which pertains 

to a conductor having two aluminum layers.  The curve is the initial stress strain curve for 

an aluminum strand. Now, if the conductor is strained to c , the strands of the inner and 

outer layers will also be strained. However, they will not be strained as much as the 

conductor.  As shown in Fig. 3, the arc length of a helix is greater than that of its axis by 

the factor / 1/ cosl   ; and only one component, proportional to / cosl     , of the 

conductor's strain is directed along the strand's axis. Thus the strain experienced by the 

strand is only 
2cosc  . These strains for the inner and outer layers are shown in the 

Fig. 2, where the subscripts I and O, respectively, apply.  The stresses in the two layers at 

maximum load are therefore I  and O  in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3  Resolution of strains in helical strand 
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     When the load is reduced, the stresses in the two layers follow their respective final 

moduli down, reaching zero stress at 2I  and 2O . These final moduli are 
2cos IE   and 

2cos OE  .  Obviously, 

 
2 22 2

        
cos cos

OI
I c O c

I OE E


   

 
     (1) 

      

     Now, the strains that occur on the initial loading produce plastic deformation, as 

reflected in the fact that the slope of the initial curve is less than E in the vicinity of I  

and O .  If we call this slope S, then the difference between I  and O  is,  

  2 2cos cosI O c I OS        (2) 

Thus if we assume values for I , c , S and the lay angles, we can calculate 2I  and 2O . 

     We are interested in the values of   where the net aluminum tension and net inward 

gripping force from the aluminum each reach zero.  Under final conditions, the layer 

modulus, referred to the conductor, is 3cosE  . Thus, the components of stress in the 

aluminum layers in the direction of the conductor axis are, 

    3 3

2 2cos           cosI I I O O OE E              

These stresses are illustrated in the top panel of Fig.4.  

     The tensions in the aluminum layers in the direction of the conductor axis are given 

by, 

  3

2cosI I I I I IP n A n EA       

            3

2cosO O O O O OP n A n EA          (3) 

We can solve (3) simultaneously for the value of   where 0I OP P  ; the result, P , is 

the conductor strain where net aluminum tension vanishes, as illustrated in the second 

panel of Fig. 4. 

     The inward pressure exerted by a helical strand due to its tension is equal to its tension 

T times the inward curvature of the helix,  , per unit length of strand, where 
2sin / R  . Thus, the inward force by the entire layer per conductor unit length is, 

  
2

22

sin cos

cos cos

nT P
F nEA

R

 
   

 


     (4) 

This applies with appropriate subscripts to each layer. We can solve for the   where 

0I OF F  , as illustrated in the third panel of Fig. 4. The result, F , is the conductor 

strain where the grip by the aluminum on the core vanishes.   

     The strains P  and F  necessarily fall between 2I  and 2O .  In general, the lay angle 

in the outer layer is greater than in the inner.  When that is true, P F  , so zero tension 

is reached before the kneepoint, as illustrated in Fig. 1, and the virtual stress in the 

aluminum at the knee point is, 

  AK A A F PH E      (5) 

where AE  is the final aluminum modulus (true, not virtual) and AH  is the aluminum 

fraction of the total conductor area. Aluminum compression occurs when P F  . 
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Fig. 4  Determination of zero aluminum tension and zero force on core 

 

Magnitudes of Aluminum Compression Stresses 

 

Equation (5) has been evaluated for reasonable values of input parameters, assuming the 

combinations of lay angles within ASTM limits that cause the greatest compressive 

stress.  For the 26/7 stranding, the input parameters were: 

 

Max. Tension 50% RS 70% RS 

c  0.0027 0.0045 

 (MPa)I  121 145 

S   (MPa) 22410 8960 

E   (MPa) 68950 68950 

 

The values of I  and S were read from a typical stress strain test of a 1350H19 

aluminum strand. The values of AK  obtained are shown in MPa in the table below for 

the 26/7 and several other strandings. 

Table I 

Stranding 18/1 26/7 30/7 45/7 54/7 84/19 

50% RS Max -0.29 -0.33 -0.36 -0.43 -0.41 -0.37 

70% RS Max -0.51 -0.56 -0.58 -0.70 -0.66 -0.76 

 

When the outer layer lay ratio was increased from its minimum of 10 to the preferred 

value of 11, AK  was almost halved in all cases shown in the table. The compressive 

stresses displayed in the table are clearly quite small.  For practical purposes, P  and F  

are congruent.   

     If the above analysis reads Dr. Barrett's rationale correctly, then the rationale is 

qualitatively sound.  However, the values of AK  that it predicts are insignificant and can 

have no practical impact in sag tension behavior.  
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Effect of Radial Strains of Aluminum Layers 

 

     The analysis above ignores effects of radial contraction and expansion of the 

conductor as it is stretched and unstretched.  These effects increase the separation 

I O   and decrease the final moduli of Fig. 2.  As a result, they make F  more positive 

relative to P .  That is,  they reduce (and generally eliminate) the aluminum compressive 

stress at the knee point.  Therefore, (5) puts an upper limit on the magnitude of 

compressive stress.   

     The following discussion describes the effects of radial strains in more detail.  

     Radial strains occur basically because the interface between a strand layer and the 

layer below it is springy.  The contacts between layers are concentrated in small discrete 

elliptical areas where the strands from adjacent layers cross.  When the conductor is 

tensioned, each layer presses against the layer below.  This pressure is transmitted 

through the small contact areas, and, because they are small and not very numerous, the 

bearing stresses are high and significant strains and normal deformations take place 

around them. 

     On the initial loading, the contact stresses are large enough to cause significant plastic 

strain.  When the tension is then reduced, the contacts behave elastically.  Thus, the 

outward radial deflections on unloading are smaller than the inward deflections during 

initial loading.  We will designate the inward initial deflections as 1R  and the unloading 

outward deflections as 2R .  1R  is always negative, and 2R  always positive. 

     Radial strains associated with Poisson's ratio also occur, but are smaller than those 

caused by normal compliance at the interlayer contacts. 

 

 

 

 

 

   Fig. 5 

 

 

 

     If the radial strains are superimposed on the longitudinal strains in the loading - 

unloading cycle, there are additional strains in the strands of the two layers. Since (see 

Fig. 3), 

 2 2 24l R p   (6) 

the rate of change of the strain in a strand with respect to radial change is, 

 
2/ sindl l

dR R


  (7) 

 

Thus, the radial strain re  is,  

 
2sin

r

l
e R

l R

 
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R IRO
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where R  is the change in the radius of the layer at the strand centerline. On initial 

loading, R  is negative (inward) and the layer strain is reduced by re .  On unloading, it 

is increased by re .  The particular values of re  depend upon the layer   and R, and on 

the applicable R , so the inward and outward values of re  are generally different. 

     We can trace the effects of radial strains in Fig. 6, where we focus on one of the 

layers.  The added strain on loading changes the value of I  or O  in Fig. 2.  The Fig. 2 

value, without radial strain, is labeled A .  According to (8), this shifts the stress to B , 

for a net change of 

 
2

1

sin
B A r rS e S R

R


            (9) 

This change results in a shift in 2  because the vertical fetch of the unloading leg is 

reduced.  Since the modulus of the unloading leg is 2cosE  , the increment in 2  is 

 2

1 2 2 2 12
tan

cos

r
r B A

S
R

E RE


    




       


 (10) 

Note that 2  moves positive when r  moves negative, which happens when 1R  is 

negative, i. e., inward. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6    Effects of Radial Strains in Nigol/Barrett Theory 

 

     The shift in 2  due to radial expansion on unloading, 2R , is simply 
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The net effect of radial strains on loading and unloading is 

 
2

2

1 2 2 2 1 2

sin
tanr r

S
R R

RE R


             

 
2

1 22

sin
                

cos

S
R R

R E


 



 
     

 
 (12) 

This pertains to one layer.  The net change in 2 2I O   (see Fig. 4) is the net of (12) for 

the inner and outer layers, that is 

 
22

1 2 1 22 2

sinsin

cos cos

OI
I I O O

I I O O

S S
R R R R

R E R E


   

 

  
         

   
 (13) 

    1R  is always negative (inward) and 2R  is always positive (outward), so the terms in 

brackets must be negative. 1R  incorporates plastic deformation at interlayer contacts 

and strand settling, while 2R  reflects only elastic movements, so 1R  is much larger.  

The second term, for the outer layer, dominates the first, which pertains to the inner layer, 

for reasons given below.  Thus, the net effect of the radial strains is to move 2 2I O   in 

the negative direction, toward reversing the order shown in Figs. 2 and 4.  That 

necessarily tends to move F P   in the positive direction, which, through (5), moves 

AK  in the positive direction, out of compression and toward aluminum tension. 

     The second term in (13) dominates the first as a result of two facts.  First, the lay angle 

for the outer layer is in general enough larger than the inner that 
2 2sin / sin /O O I IR R  .  Second, the radial movements of the outer layer, 1 OR  and 

2 OR , are larger than those of the inner layer, 1 IR and 2 IR  because the radial stiffness 

of the conductor decreases from the core outward. 

     There is very little actual test data on these radial movements, all of it limited to the 

outer layer.  Those results are most conveniently expressed as the ratio of radial strain to 

longitudinal strain,    / / /R R   , which is rather similar to Poisson's Ratio.  For 

inward initial strains, values for the ratio range from about 0.4 to 1.5, based on data in 

[3].  For outward final strains, radial to longitudinal strain ratios of about zero and 0.7 

were reported in [3].   

     Taking an inward ratio of 0.4 and outward of zero, the maxima of the ranges from 

[3],  assuming that the inner layer deflects radially half as much the outer, and employing 

(13) in (3), (4) and (5) above, the stress AK  for 26/7 ACSR in Table I changes from 0.56 

MPa  to 0.21 MPa compression at 70% RS. At 50% RS, 2O  becomes greater than 2I  

(see Fig. 2), so the outer layer unloads first and thus does not restrain the inner layer 

expansion when it unloads. Instead, a slight chamfer occurs at the kneepoint.  If ratios of 

radial to longitudinal strain nearer the middle of the ranges in [3] are used, the outer layer 

unloads first at all tensions.  Thus it appears that, in general, effects of radial strains 

remove entirely the small compression stresses predicted by the Nigol-Barrett theory. 
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Nomenclature 

A      Cross sectional area of aluminum strand 

E      Young's Modulus of aluminum 

e       Longitudinal strain of aluminum strand along its axis 

re      Strain of aluminum strand due to change in radius of layer 

F      Radial force per unit length of conductor applied by a layer due to its own tension 

HA    Aluminum area as a fraction of total conductor area 

l        Arc length of strand in one lay length 

n       Number of strands in layer 

P      Contribution of strand layer to conductor tension 

R      Radius of strand layer at strand axes 

R    Increment in layer radius 

r     Increment (in stress or strain) due to change in radius of layer 

S       Local slope of initial stress strain curve of aluminum strand 

T      Tension in aluminum strand 

        Lay angle 

       Conductor strain 

c      Maximum conductor strain 

F     Conductor strain on unloading where net radial force by aluminum on core is zero. 

P     Conductor strain on unloading where net tension in aluminum is zero 

      Curvature of strand due to its helicity ( ) 

       Lay length 

       Stress in aluminum 

AK    Average compression stress in aluminum at kneepoint (See Fig. 1). 

 

Other Variable Subscripts 

 A    Stress or strain neglecting radial strains of conductor (See Fig. 6) 

 B    Stress or strain accounting for radial strains of conductor on initial loading 

 C    Strain accounting for radial strains during loading and unloading 

 I     Inner aluminum layer 

 O    Outer aluminum layer 

 1    During or resulting from initial loading to maximum load 

 2    During or resulting from unloading following maximum load 
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