2013 PLS-CADD Advanced Training and User Group Meeting

Loadings and Structure Groups

Presented by: Gary Clark, P.E.

July 17, 2013

Introduction

- PLS-CADD Loading Analysis
 - Structure Loads (Methods 3 & 4)

Crite

ple.	ole.xyz - ATUG Original - [3D View]							
ria	Structures	Sections	Lines	Drafting	Window	Help		
No Co W	otes ode Specific W eather	/ind and Te	rrain Pa	rameters			+	
Cr Bir Ca Au Mi W	Creep-Stretch Bimetallic Conductor Model Cable Tensions Automatic Sagging Maximum Tension Weight Span Model							
Weight Spans (method 1) Interaction Diagram (method 2)								
Sti	ructure Loads	(methods 3	3,4)					

Structure Design Considerations

- After determining minimum ground clearances
 - Wire span distances
 - Wire span tensions
 - Transverse loads (horizontal wind on pole, wires)
 - Vertical loads (weight of wires, equipment)
 - Unbalanced loads (tension variations at angle poles)

Structure Design Evaluation

- How do you model the impact of these loads?
 - Material Strength
 - Loading Criteria
 - Weather and Load Cases
- ASCE7 details environmental loading information
- ANSI O5.1 establishes the capacity of poles

 Dimensions, tolerances, grades of materials, etc.
- NESC specifies the loads for pole analysis

 Minimum safety requirements for installation, maintenance, and operation of overhead systems

Grades of Construction

• Determine appropriate size/strength of poles

NESC Grades of Construction

Grade B – RR & Hwy crossings, varying supply voltage levels

Grade C - Typical power or joint-use distribution applications

Grade N – Communication use only

*California's G.O. 95 follows a similar breakdown with Grades A, B, and C but an additional Grade F is added for bonded & grounded cables

Loading Districts

• Determine wind and ice loading districts

*G.O. 95 separates California into Light and Heavy Loading Zones based on elevation that is below or exceeds 3000' above sea level

Strength Factor Reductions

- NESC recognizes that structures will experience some level of deterioration over time
 - Wood and reinforced concrete structures, xarms, braces
 - Grade B can be reduced to 2/3 of initial strength requirement
 - Grade C can be reduced to 3/4 of initial strength requirement
 - NO reduction allowed for metal and prestressed-concrete
 - RUS Guidelines allow 2/3 reduction for wood
 - G.O. 95 allows 2/3 reduction for Grades "A" & "B"
 - 1/2 reduction allowed for Grades "C" and "F"

Introduction to Structure Groups

- Structure Loads Criteria Table
 - Contains all data needed to define a structure load tree
 - Structure check only gives you the worst-case load result
 - Default table settings are fine for all-new or as-built analysis, but a mixed project requires multiple steps
 - Run Structure Usage report with new strength factors, save file
 - Go to Structure Loads Criteria Table, reduce strength factors
 - Run Structure Usage report with reduced factors, save file
 - Combine report results to see usage of all new & existing poles
 - Restore Structure Loads Criteria Table to standard values

Structure Loads Criteria Table

Structu	ire Loads Crite	ria	and a little of	COLUMN TO LOW	-		_														? ×
	Wire	Struct.	Struct.	Struct.	Struct.	Struct.	Strength	Strength	Structure	Pole	Pole	Adjust	•								
	Tension	Weight	Wind	Wind	Ice	Ice	Factor	Factor	Groups	Tip	Tip	Cable	Wi =								
	Load	Load	Area	Load	Thickness	Density	Steel	Wood	Concrete	Concrete	Concrete	Guys	Non-	Braces	Insulators	Foundation	On Which	Deflection	Deflect.	Loads	
_	Factor	Factor	Factor	Model	(in)	(lbs/ft^3)	Poles	Poles	Poles	Poles	Poles		Tubular				To Apply	Check	Limit		
							Tubular-		Ultimate	First	Zero		Arms					(PLS-POLE	ę		P
							Arms			Crack	Tension							only)	or		5
							Towers												(ft)		
				NESC 2012				0.75	1			0.0	0.75	0.75	1		12221	No. Timin		Ne	
1	1	1	1	NESC 2012			1	0.75	1			0.9	0.75	0.75	1	1	AII	NO LIMIC	INA	NO No	
2	1	1	1	NESC 2012			1	0.75	1			0.9	0.75	0.75	1	1	·AII.	NO LIMIT	NA	NO	
3																					
4																					
5																					
6																					
7																					
8																					
9																					
10																					
11																					
12																					
13																					
14																					
15																					
16																					
17																					
18																					
19																					
20																					
21																					
22																					
23																					
24																					
25																					
26																					
27																					
28																					
29																					
30																					
31																					
32																					
33					1														1		-
٠			1		1	1		·						I	I	·	·		1		+
			1		1 8																

Web site: Wind directions summary page Web site: Wind & ice loading tech. note Structure Groups OK Cancel

Structure Group Table

• All structures initially belong to the "All" group

Structure Groups Criteria

Note: First row is reserved for mandatory 'All' group to which all structures belong.

	Group	Group	Rule For Group Membership
	Name	Description	
1	All	Built in group that all structures belong to	Automatic: all structures
2	Has DE	At least one dead end set on structure	Automatic: has a DE between sets 1 and 60
3	No DE	No dead end sets on structure	Automatic: has no DE between sets 1 and 60
4	All sets DE	All sets on structure are dead end	Automatic: has only DE between sets 1 and 60
5	Not all sets DE	At least one set on structure is not dead end	Automatic: has non DE between sets 1 and 60
6	Angle	Structure near nonzero line angle	Automatic: line angle outside 0.00 to 0.00 (deg) within 0.33 (f
7	PLS-POLE	PLS-POLE created structure	Automatic: PLS-POLE created
8	PLS-POLE has DE	PLS-POLE created structure with at least one dead end	Automatic: PLS-POLE created and has a DE between sets 1 and 60
9	PLS-POLE no DE	PLS-POLE created structure without any dead end sets	Automatic: PLS-POLE created and has no DE between sets 1 and 60
10	PLS-POLE angle	PLS-POLE created structure near nonzero line angle	Automatic: PLS-POLE created and line angle outside 0.00 to 0.00
11	TOWER	TOWER created structure	Automatic: TOWER created
12	TOWER has DE	TOWER created structure with at least one dead end set	Automatic: TOWER created and has a DE between sets 1 and 60
13	TOWER no DE	TOWER created structure without any dead end sets	Automatic: TOWER created and has no DE between sets 1 and 60
14	TOWER angle	TOWER created structure near nonzero line angle	Automatic: TOWER created and line angle outside 0.00 to 0.00 (d
15			
16			

Structure Group Table Modifications

- Add Group Name, Description, and Rule
 - For example, rule is useful for a station range of a certain type
- Go back to this table to keep track of structure counts

Note: First row is reserved for mandatory 'All' group to which all structures belong

	Group	Group	Rule For Group Membership	Load	Structures
	Name	Description		Cases	In
				For	Group
				Group	
1	A11	Built in group that all structures belong to	Automatic: all structures	2	13: P1001 (Ex.), P1002 (Ex.), P1003 (New), 1
2	Has DE	At least one dead end set on structure	Automatic: has a DE between sets 1 and 60	0	13: P1001 (Ex.), P1002 (Ex.), P1003 (New), J
3	No DE	No dead end sets on structure	Automatic: has no DE between sets 1 and 60	0	0
4	All sets DE	All sets on structure are dead end	Automatic: has only DE between sets 1 and 60	0	10: P1001 (Ex.), P1002 (Ex.), P1005 (Ex.), 1
5	Not all sets DE	At least one set on structure is not dead end	Automatic: has non DE between sets 1 and 60	0	3: P1003 (New), P1004 (New), P1011 (Ex.)
6	Angle	Structure near nonzero line angle	Automatic: line angle outside 0.00 to 0.00 (deg) within 0.33 (f	0	12: P1002 (Ex.), P1003 (New), P1004 (New), 1
7	PLS-POLE	PLS-POLE created structure	Automatic: PLS-POLE created	0	11: P1001 (Ex.), P1002 (Ex.), P1003 (New), 1
8	PLS-POLE has DE	PLS-POLE created structure with at least one dead end	Automatic: PLS-POLE created and has a DE between sets 1 and 60	0	11: P1001 (Ex.), P1002 (Ex.), P1003 (New), 1
9	PLS-POLE no DE	PLS-POLE created structure without any dead end sets	Automatic: PLS-POLE created and has no DE between sets 1 and 60	0	0
10	PLS-POLE angle	PLS-POLE created structure near nonzero line angle	Automatic: PLS-POLE created and line angle outside 0.00 to 0.00	0	10: P1002 (Ex.), P1003 (New), P1004 (New), 1
11	TOWER	TOWER created structure	Automatic: TOWER created	0	0
12	TOWER has DE	TOWER created structure with at least one dead end set	Automatic: TOWER created and has a DE between sets 1 and 60	0	0
13	TOWER no DE	TOWER created structure without any dead end sets	Automatic: TOWER created and has no DE between sets 1 and 60	0	0
14	TOWER angle	TOWER created structure near nonzero line angle	Automatic: TOWER created and line angle outside 0.00 to 0.00 (de	0	0
15	New	New structures with standard safety factor values	Manually assigned by user	0	3: P1003 (New), P1004 (New), P1010 (New)
16	Existing 250B 2/3	Existing structures with NESC 2/3 reduction	Manually assigned by user	0	10: P1001 (Ex.), P1002 (Ex.), P1005 (Ex.), 1
17	Existing 250C&D 3/4	Existing structures with NESC 3/4 reduction	Manually assigned by user	0	0
18					

Structure Groups in Criteria Table

- Copy your standard criteria lines
- Update the "existing" criteria with reduced strength factors
- Select applicable structure groups (2/3 or 3/4 reduction)

Struct	ure Loads Criteria	-	-	_				_					_			
	Description	Weather case	Cable	Wind	Strength	Strength	Structure	Pole								
			condition	Direction	Factor	Factor	Groups	Tip								
					Steel	Wood	Concrete	Concrete	Concrete	Guys	Non-	Braces	Insulators	Foundation	On Which	Deflection
	-				Poles	Poles	Poles	Poles	Poles		Tubular				To Apply	Check
					Tubular-		Ultimate	First	Zero		Arms					(PLS-POLE
					Arms			Crack	Tension							only)
					Towers											
1	RULE 250C NA+ (new)	NESC Light Di	Initial RS	NA+	1	0.75	1			0.9	0.75	0.75	1	1	'New'	No Limit
2	RULE 250C NA- (new)	NESC Light Di	Initial RS	NA-	1	0.75	1			0.9	0.75	0.75	1	1	'New'	No Limit
з	RULE 250C NA+ (existing)	NESC Light Di	Initial RS	NA+	1	0.5625	1			0.9	0.5625	0.5625	1	1	'Existing 250C&D 3/4'	No Limit
4	RULE 250C NA- (existing)	NESC Light Di	Initial RS	NA-	1	0.5625	1			0.9	0.5625	0.5625	1	1	'Existing 250C&D 3/4'	No Limit
5	RULE 250B NA+ (new)	NESC Light Di	Initial RS	NA+	1	0.65	1			0.9	0.65	0.65	1	1	'New'	No Limit
6	RULE 250B NA- (new)	NESC Light Di	Initial RS	NA-	1	0.65	1			0.9	0.65	0.65	1	1	'New'	No Limit
7	RULE 250B NA+ (existing)	NESC Light Di	Initial RS	NA+	1	0.433333	1			0.9	0.433333	0.433333	1	1	'Existing 250B 2/3'	No Limit
8	RULE 250B NA- (existing)	NESC Light Di	Initial RS	NA-	1	0.433333	1			0.9	0.433333	0.433333	1	1	'Existing 250B 2/3'	No Limit
9																

Structure Group Assignment

• Staking Table – Manually Select Structure Group

Staking Table								
								
		Manual	Location	Structure	Structure	Structure		
		Structure	Number	Number	Height (ft)-	Family		
		Group			Class			
		Membership						
	1	'Existing 250B 2/3'	1	P1001 (Ex.)	50' / CL1	Wood		
	2	'Existing 250B 2/3'	2	P1002 (Ex.)	50' / CL1	Wood		
	3	'New'	3	P1003 (New)	65' / CL1	Wood		
	4	'New'	4	P1004 (New)	55' / CL1	Wood		
	5	'Existing 250B 2/3'	5	P1005 (Ex.)	35' / CL1	Wood		
	6	'Existing 250B 2/3'	6	P1006 (Ex.)	45' - CL1	Wood		
	7	'New'	10	P1010 (New)	40' - CL1	Wood		
	8	'Existing 250B 2/3'	9	P1009 (Ex.)	50' - CL1	Wood		
	9	'Existing 250B 2/3'	12	P1012 (Ex.)	40' / CL1	Wood		
	10	'Existing 250B 2/3'	11	P1011 (Ex.)	45' / CL1	Wood		

Structure Group Demonstration

Structure Group Reporting

• Structure Groups Eliminate Structure Check Mistakes/Omissions

Characterize Name	Structure Strength Usage						
Structure Name	Existing Structure Group	Existing & New Structure Groups					
P1001 (Ex.)	72.5%	72.5%					
P1002 (Ex.)	39.3%	39.3%					
P1003 (New)	71.7%	107.5%					
P1004 (New)	39.1%	39.1%					
P1005 (Ex.)	16.9%	16.9%					
P1006 (Ex.)	72.3%	72.3%					
P1010 (New)	76.5%	114.7%					

Structure Group Benefits

- Eliminate multiple steps to revise structure criteria
- Eliminate the need to save multiple criteria files or continue changing strength factors during modeling
- Eliminate the need to run multiple structure checks
- Eliminate the need to sort & combine strength data
- PLS-CADD keeps track of Structure Group quantities
 Smoother, more efficient design process

Thank you for your time!

Any questions?

