
### STRINGING CONDUCTOR ON FLEXIBLE TSP'S

Douglas Proctor PLS-CADD User Group Meeting June 2 – 4, 2015

#### Line Map



#### **Study Project**

## **Double Circuit Line Poles Directly Embedded 19** Poles 14 angles **1** Interstate Crossing **1 UPRR Crossing**

#### **Project Installation**

- Rake to allow for deflection
- Setting the embedded sections
- Order of Construction
  - UPRR
  - Interstate
- Order of Stringing and sagging
  - Both Circuits
  - One at a time
- Final adjustments

#### Stringing on TSP's

#### Poles deflect

- Deflection shortens span
- Tension reduced
- Angles
  - Rake on bisector
  - String through and cut in
- Controlling Stringing Several Methods
  - Stringing Charts
  - Project Specific Stringing Data
  - Trial and Error

#### Tradition (an aside)

- Grandfathered Standards
  - Must use or merely a resource?
  - What if they are wrong?
  - Contractor's problem
    - It's in their contract
    - Who suffers if they don't do it right?
  - Should we write new standards (internal to the Utility)?



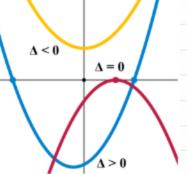
A fine old tradition

- It is a daunting task to change a standard
- Maybe we can be clever and re-interpret the existing ones?
- It's a special case to be solved in the field.
  - Is it really?
  - Fireman to the rescue, again?
- Question
- What standards do you follow?

#### Challenges

- Large Angle in UPRR Span
- Short Duration for I-5 Crossing
- Sag Charts
  - Communication to Contractor
  - Initial Data
  - Sag Check Data

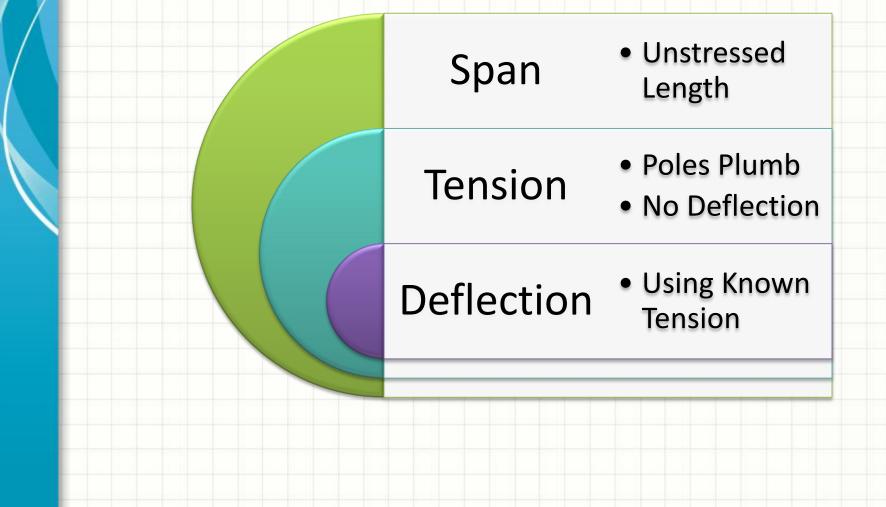
#### **Setting Procedure**


- Angles and Deadends That are not Terminals
  - Rake on bisector
    - String Through
    - Cut in
    - Sag
  - Add Jumpers
- Large Angle Deadends
  - Rake on bisector
  - String to both sides
  - Sag one side
    - Sag the other

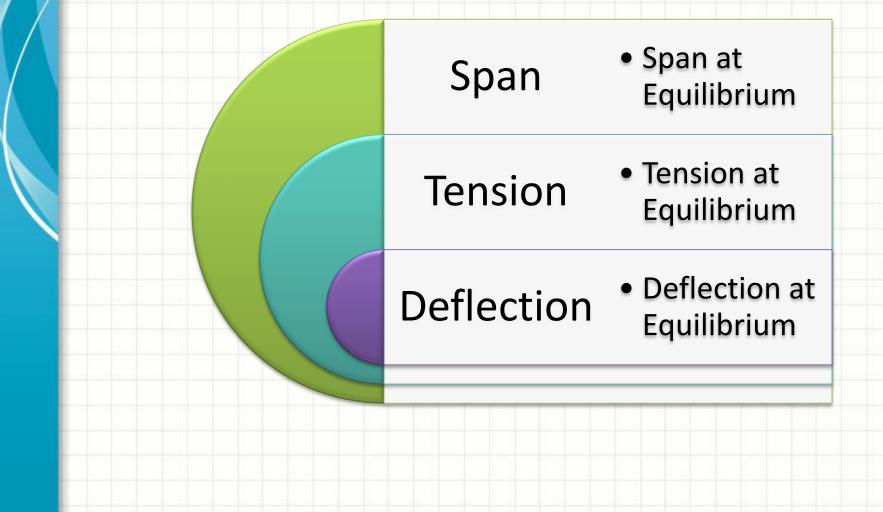
#### **Working on Another**

The sags and tensions are readily determined for a rigid structure.

Idea


- Therefore, the unstressed length can be determined for the rigid structure case.
  - However, the structure is not rigid.
- Deflection changes the span.
- The unstressed length stays the same.
- What is the sag and tension at equilibrium?




#### **Stating The Problem**

- The sags and tensions are known for a rigid structure.
- Therefore, the unstressed length can be determined for the rigid structure case.
- However, the structure is not rigid.
- Deflection changes the span.
- The unstressed length stays the same.
- What is the sag and tension at equilibrium?

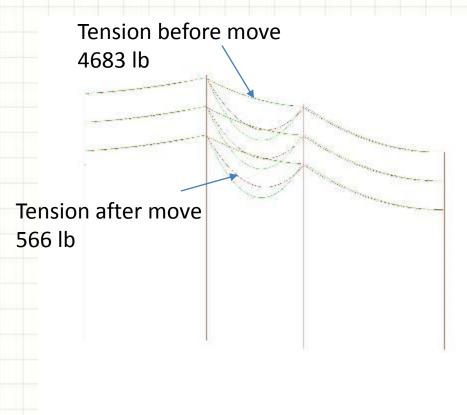
#### **Known Parameters**



#### **Unknown Parameters**






#### **S**TRUCTURE



-

#### Deflections

- Tip deflection from PLS-POLE = 21'' at  $60^{\circ}$  F
- Procedure Investigated
  - Move pole 12 21" toward pole 13 to simulate deflection
  - Results unrealistic



### Deflections Considering Equilibrium

- The reduction in tension due to the deflection of pole 13 drops rapidly.
- An imbalance is created at pole 12, which also deflects and so on down the line.
- The unstressed length was determined from the rigid case
- The tension can be determined for the reduced span length
- When the other side is strung, the span will be back to the original length at design tension.

#### PLS CAD tools

- Equaling Tensions at Poles
- Flexible Pole Models
- Sections must be clipped in
- Find Tension using "Sag-Tension" under sections
- Find Unstressed Length under "section modify"

#### What's Next

- Updating the Construction Specification
- Prepare Sag Charts
- Check Sags after Construction
- Continue to Develop a workable analytical method to include deflection dynamically

#### Summary

- Construction will proceed using the techniques described
- The dynamic deflection analysis is a work in progress
- I still use a graphical method
  - Trial and error adjusting span lengths until unstressed lengths result in equalized tensions
- Why haven't we had many more problems?
  - TSP's are very forgiving
  - They move to where they are most comfortable.

# QUESTIONS AND DISCUSSION?