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Applications of Transmission Line Post Insulators



Applications of Transmission Line Post Insulators
420 kV – Horizontal (pivoting) Vee

Traditional vs Compact Double circuit 420 kV lines in Dubai. 

• Numerous Case Studies have demonstrated that compact lines can be more cost 

effective than traditional, large format structures

• Transmission line post insulators often a key component of compact line designs



Double circuit 230 kV line upgraded to double circuit 345 kV line - PacifiCorp Utility USA 

Applications of Transmission Line Post Insulators Line
Upgrade using Horizontal (pivoting) Vee

230 kV 345 kV  



Applications of Transmission Line Post Insulators
400 kV – Hybrid Braced Post



Applications of Transmission Line Post Insulators
Not your Grandpa’s Post Insulators

1100kV AC single line circuit – China 2018



Typical Applications of post insulators

Post 

insulator

Braced Post 

insulator

Horizontal 

(pivoting) Vee
Insulated 

cross -arm

11-138 kV

66-220 kV

220-500 kV

300-1000 kV+

Stability control

EPRI RESEARCH FOCUS

INCLINED 
ROTATION 

PLANE



Small Scale Material Tests 



Small scale coupon tests

▪ Samples cut from post core 
(parallel to axis)

▪ Steel samples machined 
from base



Steel coupon from cast end fittings
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Steel Coupon tests

S1 S2 S3

Average of 3 samples

Ult. Stress 72.3ksi 498MPa

Yield stress 46.1ksi 318MPa

64%of ultimate

Young's Modulus 16msi 110GPa

Note low E



Composite coupon test

• E important to determine buckling 

capacity

– 45 GPa measured based on coupon tests

– Values much larger than those found in 

literature (37GPa)

• Ultimate tensile capacity significantly 

higher than published results

– 930MPa measured vs. 800MPa published

• See ASTM D3039-17 for procedure

p2EI

4L2
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Small Scale Test results
Composite Core vs. Cast End Fittings



Appropriate Strength Factors



Failure Mode of Pultruded Composite Posts

Early Tensile Tests on long rod composites 

Source: Silicon 

Composite Insulators 

– Papailiou & 

Schmuck 

• Failure in pultruded composites 
largely creep dependent (failure after 
time under sustained tensile load)

• Failures of long term sustained load 
can occur at 0.65 ultimate strength

• Crimped fittings performed better that 
conical fittings

+/- 4 years

+/- 1 hour



Failure Mode of Pultruded Composite Posts
Cantilever Tests on Composite Posts

• Tip deflection of cantilever posts increase linearly with the log of time 

• The deflection rate increases with increased stress levels

• A knee point in the deflection rates was used to establish damage limit

• For long post insulators, damage limits vary from 0.6-0.75 ultimate strength 

Slope = deflection “rate”

= Deflection / log t 
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Source: Silicon 

Composite Insulators 

– Papailiou & 

Schmuck 



NESC Strength Factors

• Strength factor for post insulators is 

0.5 of ultimate capacity (SCL /SML) 

per Table 277.1

– For tension and cantilever loads

– No value for compression (0.5 

assumed)

• Different strength factors may be 

used based on qualified engineering 

studies per Cl. 277



Some Comments on Strength Factors

• Experimental results support failure at 0.6 – 0.65 of ultimate loads over 

time under sustained tensile load

• Strength factors of 0.5 to permanent (continuous) service loads are valid

• Strength factor of 0.5 to ultimate transient loads possibly conservative

• Most ultimate loads (wind, ice, broken wires) are transient

• Strength factor of 0.5 may be influenced by 

– history of brittle fracture in earlier generation long rod composites

– nature of failure mode (once a fiber breaks, strength is permanently reduced and 

remaining fibers carry increased stress)

• Field experience on post insulators indicate low incidence of in service 

failures under ultimate design loads



Post Insulator Capacity



Disparities between load curves from different suppliers

• Significant disparities between 

load curves from different 

manufacturers evident from 

different product specifications

– Despite similar generic 

composite material 

specification and base 

designs

• Can a generic calculator be 

developed?
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Combined Loading tests for Post Insulator

• EPRI Loading tests confirmed validity of IEC 61952 method 

curves



IEC 61952 – Determination of Post insulator capacity

• Combination of Vertical, Longitudinal and Compression / Tension loads converted to 

equivalent moment

𝑀𝐷𝐶𝐿. 𝑑 = 𝑀𝑐 = 𝑀𝑇

= 0.5 SCL = 0.5
𝜎𝑚𝑎𝑥𝜋𝐷

3

32 NESC

HORIZONTAL POST INCLINED POST
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Anatomy of Post Insulator Capacity Curve 

– 2.5” Horizontal Post (Typical for 138kV)

Euler Buckling 

load

MDCL

Load limit on 

end fittings 
PL= 0N

Combined Vertical 

+ Compression

Combined Vertical 

+ Tension p2EI

4L2

COMPRESSION (C)TENSION (T)

UPLIFT

DOWNFORCE (V)

Combined Vertical + Compression Case:Combined Vertical + Tension Case:

• Longitudinal loads incorporated as an additional vector to the cantilever load 

L

V
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Anatomy of Post Insulator Capacity Curve 

- Inclined Post 
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▪Combined curve for inclined posts may be calculated by calculating local axis load vectors

▪OR  simply rotating the horizontal curve by the inclination angle a



Optimizing Gain Base Angles  

- Inclined Post 

▪Post inclination (gain) angle 

a  may be optimized for 

different length and 

diameter combinations

▪Slender posts tend to 

benefit from higher gain 

angle

▪Ability to optimize depends 

on supplier and base type 

connection

▪Note: PLS & Conventional 

notation – Compression 

values are negative



Braced Post Insulator Capacity



Braced vs. unbraced post failure modes



Impact of Insulator Deflection on Longitudinal Loads

▪How much longitudinal strength do you need? (Probably less than you think)

▪Longitudinal load can be induced from unequal adjacent spans

▪Net longitudinal load reduced substantially as insulator tip deflects and tension redistributes

▪Tip Deflection = pole deflection + rotation of base + flexure of post

dL

Include response of wire 

system NET L = INDUCED L – k.dL

SHORT SPAN LONG SPAN

ELEVATION
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INDUCED L



Determination of Longitudinal Stiffness
An Important Parameter both Capacity and Imposed Loads

▪Very few manufacturers provide longitudinal 
or vertical stiffness values

▪PLS Pole will default to 833lb/in (very stiff) 
where no input made
– Vertical stiffness not critical – may be assumed stiff

– Longitudinal stiffness measured values for  varied from 
30lb/in (220kV) to 150lb/in (138kV)

▪Longitudinal Stiffness may be calculated from 
– Torsional stiffness (in lb-in/rad) of base 

– Flexural stiffness of composite post 

Few manufacturers provide 

longitudinal or vertical stiffness 

values.
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Torsional Stiffness of Base Connection Variants

 

FALT BASE (4          

BOLT 

CONNECTION) 

1.2-3.5 105 Nm/rad

FLAT BASE (2 BOLT 

CONNECTION)

1.1-2.5 105 Nm/rad

BENDABLE BASE 

(FACE CONTACT)

1-2 105 Nm/rad

BENDABLE BASE 

(EDGE CONTACT)

0.7-1.4 105 Nm/rad

DIRECT POLE 

MOUNT

10-15. 105 Nm/rad



Longitudinal Stiffness tests 
FLAT BASE (4 bolt connection)

▪Rotation of base measured with LVDT pair

▪Elastic Modulus of composite post may be deduced from net tip deflection 
due to flexure
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Longitudinal Stiffness tests 
Bendable base with edge contact
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Impact of Wire System on Insulator Buckling Capacity

▪Previous testing has not always included the effect of end restraint provided by the wire system

?

? ?NO RESTRAINT ON END

▪Buckling coefficient on 
Braced Posts is complex 
and depends on 

– Torsional stiffness of base

– Stiffness of wire system



138kV Braced Post Insulator Tests



138kV Braced Post Test setup 

▪Arrangement rotated 90 degrees to facilitate testing

▪Predominant load applied with load ram at various vectors to 

impose different combinations of transverse and vertical load 

▪Dead weights apply longitudinal load 

▪Spring assembly to verify effect of conductor support

90o

55o

37o
12o



Effect of end restraint on insulator capacity
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138kV Braced Post testing  - Different modes of failure
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▪No buckling failures in 
138kV Posts (!)



138kV Braced Post Test - End fitting failure

▪End fitting 
failures can 
induce impact 
loads on other 
parts of the 
system



138kV Braced Post Test - Post failure in bending

▪Post failures in 
bending are 
gradual (no 
dynamic loads 
induced into 
system)



138kV Braced Post Test - Base failure



End connection design can be critical
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▪ End fittings have failed prematurely under some combination loads

▪ NESC Strength factors do not distinguish between composite 
components and metal components



220kV Braced Post Insulator Tests



Phase 2 – 220kV braced post insulator tests

Accommodating large tip deflections
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Phase 2 – 220kV braced post insulator tests

Accommodating large tip deflections

• Increased reaction frame size

• Load application by winch



Phase 2 – 220kV braced post insulator tests

Keeping loads orthogonal

• Load maintained at -3o to -3o from horizontal

– Wireless digital inclinometer

LOAD CELL INCLINOMETER



220kV Pure Compression Test







Some recent tests



FEM Modelling



Initial FEM modelling

▪ FEM Modelling performed in ADINA

▪ Incorporating different materials joined by “glue mesh”

Youngs Modulus Ultimate stress Poissons Ratio

E (Mpa) E (ksi) fy (Mpa)

Composite ECR Glass Core 37000 5370 800 120 0.45

A36 steel 200000 29010 470 70 0.26

6063 T5 Aluminum 68900 9990 140 20 0.33



Initial FEM modelling

▪ Loads applied with time function to determine 

– Displacement

– Non-linear deflection

– Buckling capacity



Later FEM modelling

▪Good correlation 

between FEM 

model and 

displacement

▪ Prediction of 

failure load more 

challenging

▪ Interference 

model used to 

simulate stress 

between housing 

and composite 

post



Anatomy of a Braced Post Insulator Capacity Curve
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▪ Capacity of braced post highly 
dependent on direction of load

– “weakest” point: pure compression 
load - = buckling load on post 
insulator 

– “strongest” point = pure vertical load 
– allows compression loads in post 
+/- 4 x higher 

▪ Capacity varies based on 
restraint from wire and rigidity of 
base

NOTE:

Max C < 2 Max V

Capacity influenced by wire system stiffness



Key Findings to date

• Large disparities between published load curves for similar 

insulators 

– Some don’t publish interaction capacities (only max 

horizontal and vertical loads)

• Longitudinal stiffness of braced post system impacts net 

longitudinal load, and determines P-delta moments induced 

– Very few suppliers publish longitudinal stiffness

• Different testing techniques employed by manufacturers

– No published or industry standard for testing braced posts

• It pays to test – ability to use own, verified test data and 

strength factors



Key Findings to date (contd.)

• Impact of the wire system has a significant impact on insulator 

capacity

• No manufacturers attempt to quantify the impact of wire 

system on capacity

• Many different modes failure types observed on tests to date 

– “Good” failure modes: bending, base failure, buckling

– “Bad” failure modes: end connection rupture, brace failure –

induce dynamic loads

• Base connection types have a large impact on compression 

capacity for longer (220kV) posts
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Feel free to contact me at    

 +1 704 595 2495    

 jmarais@epri.com

Thank you for your attention

Questions/ Comments?


