2019 PLS-CADD Advanced Training and User Group

Vegetation Work Sites and Wildfire Risk Assessment

Tim Cashman, PE **Power Line Systems**

by

IT'S ALL ABOUT YOUR POWER LINES

IT'S THE SOLUTION

Introduction

- Vegetation management of overhead transmission and distribution line corridors has been a major topic in our industry from many years.
- Tree contact with transmission lines is a leading cause of electric power outages
- Vegetation management practices are under ever increasing regulatory scrutiny

Introduction

- Texas experienced more then 4,000 power line caused wildfires in a 3 ¹/₂ year period around 2013¹
- Estimated about 5% of wildfires caused by power lines in California between 2007 and 2016 accounting for about 11% of total acres burned²
- Power lines were found to cause 5 of the 11 major fires of the 2009 Black Saturday Fires in Victoria, Australia³

¹ Texas Wildfire Mitigation Project (www.wildfiremitigation.tees.tamus.edu) ² Kousky, Greig, Lingle & Kunreuther, "Wildfire Costs in California: The Role of Electric Utilities" August 2018 ³ Thompson, Christodoulou & Cronau, "Powerline failures scrutinized as potential cause of brushfire crisis" October 2013

Presentation Outline

- Discuss vegetation clearances to overhead transmission and distribution lines
- Demonstrate vegetation clearance calculations in PLS-CADD
 - Grow-in clearances
 - Fall-in clearances
- Demonstrate creation of clearance Work Sites and graphical representations of clearance areas

National Regulations

- Overhead transmission lines above 200kV or lower voltage lines designated by NERC or WECC fall under NERC **FAC 003**
- Most lines below 200kV fall under individual state regulatory policies and procedures
- RUS utilities fall under RUS regulations, including specific requirements of Bulletin 1724E-200

NERC FAC 003 Highlights

- Prevent vegetation encroachments:
 - Into the Minimum Vegetation Clearance Distance (MVCD)
 - Due to fall-in from inside the ROW
 - Due to blowing together of applicable lines and vegetation located inside the ROW
- Prevent vegetation encroachments that account for: Movement of conductors under their rating and all rated electrical operating conditions

NERC FAC 003-04 MVCD

FAC-003-4 Transmission Vegetation Management

L	<u> </u>	NO/CD	MILLOD	10/00	10/00	10,000	N/0/OD	MILLOD	Ne/co	10/00	10/00	A GLOOD	10/00	10/00	10/00	10/00	Marco
(AC)	(AC)	(foot)	foot	foot	fact	foot	foot	foot	foot	foot	foot						
Nominal	Maximu	(ieer)	reet	reet	L. L.	ieet	ieet	reet	reet	reet	reet	ieet	ieet	reet	reet	reet	leet
System	m System	Over sea	Over 500	Over	Over	Over	Over	Over	Over								
Voltage	Voltage	level up	ft up to	1000 ft	2000 ft	3000 ft	4000 ft	5000 ft	6000 ft	7000 ft	8000 ft	9000 ft	10000 ft	11000 ft	12000 ft	13000 ft	14000 ft
(KV)+	(kv) ¹⁰	to 500 ft	1000 ft	up to													
1	()			2000 ft	3000 ft	4000 ft	5000 ft	6000 ft	7000 ft	8000 ft	9000 ft	10000 ft	11000 ft	12000 ft	13000 ft	14000 ft	15000 ft
					13.13	40.05	12.15	12.50	12.00	17.00	12.15	42.25	43.55	12.20	12.00		
/65	800	11.60	11./m	11.9ft	12.1π	12.2π	12.4π	12.6ft	12.8n	13.0m	15.1π	15.5π	13.5π	15./π	13.9ft	14.1π	14.3π
500	550	7.0ft	7 1ft	7.2ft	7.4ft	7.5ft	7.6ft	7 8ft	7 9ft	8 1ft	8.2ft	8 3ft	8.5ft	8.6ft	8.8ft	8.9ft	9.1ft
				7.2.1		1.510					0.210	0.510					
345	36219	4.3ft	4.3ft	4.4ft	4.5ft	4.6ft	4.7ft	4.8ft	4.9ft	5.0ft	5.1ft	5.2ft	5.3ft	5.4ft	5.5ft	5.6ft	5.7ft
287	302	5.2ft	5.3ft	5.4ft	5.5ft	5.6ft	5.7ft	5.8ft	5.9ft	6.1ft	6.2ft	6.3ft	6.4ft	6.5ft	6.6ft	6.8ft	6.9ft
230	242	4.0ft	4.1ft	4.2ft	4.3ft	4.3ft	4.4ft	4.5ft	4.6ft	4.7ft	4.8ft	4.9ft	5.0ft	5.1ft	5.2ft	5.3ft	5.4ft
161*	169	2.7π	2.7π	2.8ft	2.9ft	2.9ft	3.0ft	3.0ft	3.1π	3.2π	3.3π	3.3ft	3.4π	3.5π	3.6π	3.7π	3.8 π
138*	145	2.3ft	2.3ft	2.4ft	2.4ft	2.5ft	2.5ft	2.6ft	2.7ft	2.7ft	2.8ft	2.8ft	2.9ft	3.0ft	3.0ft	3.1ft	3.2ft
4458	424	4.00	4.05	4.00	2.00	2.00	2.48	2.45	2.26	2.26	2.28	2.26	2.48	3.54	3.54	2.68	2.76
115*	121	1.9π	1.911	1.91	2.011	2.011	2.1π	2.1π	2.2π	2.2π	2.3π	2.3π	2.4π	2.5π	2.5π	2.6π	2./π
88*	100	1.5ft	1.5ft	1.6ft	1.6ft	1.7ft	1.7ft	1.8ft	1.8ft	1.8ft	1.9ft	1.9ft	2.0ft	2.0ft	2.1ft	2.2ft	2.2ft
601	72	4.44	1.45	4.444	4.76	4.24	4.74	4.75	4.28	4 24	4.28	4 44	4.49	1.45	4.58	1.68	1.68
69*	/2	1.1π	1.111	1.1π	1.2π	1.2π	1.2m	1.2π	1.5π	1.511	1.5π	1.4ft	1.4π	1.4π	1.5π	1.6π	1.6π

FAC-003 — TABLE 2 — Minimum Vegetation Clearance Distances (MVCD)¹⁷

For Alternating Current Voltages (feet)

* Such lines are applicable to this standard only if PC has determined such per FAC-014

(refer to the Applicability Section above)

* Table 2 – Table of MVCD values at a 1.0 gap factor (in U.S. customary units), which is located in the EPRI report filed with FERC on August 12, 2015. (The 14000-15000 foot values were subsequently provided by EPRI in an updated Table 2 on December 1, 2015, filed with the FAC-003-4 Petition at FERC)

¹⁷ The distances in this Table are the minimums required to prevent Flash-over; however prudent vegetation maintenance practices dictate that substantially greater distances will be achieved at time of vegetation maintenance.

¹⁸ Where applicable lines are operated at nominal voltages other than those listed, the applicable Transmission Owner or applicable Generator Owner should use the maximum system voltage to determine the appropriate clearance for that line.

¹⁹ The change in transient overvoltage factors in the calculations are the driver in the decrease in MVCDs for voltages of 345 kV and above. Refer to pp.29-31 in the Supplemental Materials for additional information.

RUS 1724E-200 Highlights

- Applies to all lines 200kV and above or lower voltage lines designated as critical per NERC FAC 003
- Radial clearances provided and based on IEEE 516 Standard (Different than FAC 003-04)
- Clearances to be applied at all rated operating conditions
- Displacement of conductor to include movement of suspension insulators and deflection of flexible structures

RUS 1724E-200 Highlights

FIGURE 5-2: RADIAL CLEARANCE REQUIREMENT TO VEGETATION

Power Line Systems

6/19/2019

RUS 1724E-200 Highlights

(TABLE RADIAL OPERATING CLEARANCES (i DETERMINING CLEARANCES TO VE NERC Standard FAC-003.1 Transmission Ve Guideline For Maintenance Metho	5-2 n feet) FR GETATIC getation M ds Of Ene	OM IE ON FRO Ianager	EE 516 DM COI nent Pro Power I	FOR U NDUCI ogram, 1 .ines)	ISE IN TORS IEEE 51	16,
Condi	tions under which clearances apply:		Bized				
Displa determ conduc The op account	ced by Wind: Radial operating clearances are to be applied ine applicable conductor temperature and wind conditions fo tor is to include deflection of suspension insulators and defle erating clearances shown are for the displaced conductors ar t for blowout of the conductor and the insulator string. This	at all rated op r all rated op ection of flexi d do not prov distance is to	perating co erating co ble struct ide for th be added	onditions." nditions. " ures. e horizont l to the req	The design The displace al distance uired clear	her should cement of e required rance. See	the to
Equati	on 5-1.						-
Clear Nomi	ances are based on the Maximum Operating Voltag nal voltage, Phase to Phase, kV _{L-L}	e. 34.5 & 46 ¹	69 ¹	115 ¹	138 ¹	161 ¹	230 ^{1,2}
Max. Max.	Operating Voltage, Phase to Phase, kV _{L-L} Operating Voltage, Phase to Ground, kV _{L-G}		72.5 41.8	120.8 69.7	144.9 83.7	169.1 97.6	241.5 139.4
<u>Radia</u> <u>Clear</u>	l Table 5 IEEE Standard 516 Operating ances			Clearanc	es in fee	t	
O,	perating clearance at all rated operating conditions wire adder for survey and installation tolerance	1.8	1.8	1.9 5 feet for	2.3	2.5	2.7
D	sign adder for vegetation	D	etermine	d by desig	ner (see N	ote 3 belo	w)
ALTT Additi 3300 f	TUDE CORRECTION TO BE ADDED TO VALUES AB onal feet of clearance per 1000 feet of altitude above eet	<u>OVE</u> .02	.02	.05	.07	.08	.12
Notes: 1. 2. 3.	These clearances apply to all transmission lines operated a voltage lines designated as critical (refer to NERC FAC 0 The 230 kV clearance is based on 3.0 Per Unit switching The design adder for vegetation, applied to conductors di	at 200 kV pha 03). surge. splaced by wi	se-to-pha nd, shoul	se and abo d account	ove and to for reason	any lower ably antic	ipated

addition to the aforementioned factors.

6/19/2019

Vegetation Clearances in PLS-CADD

- Separate checks for Grow-in and Fall-in
- Simultaneously check up to 200 weather cases, including wind conditions (i.e. blowout)
- Wire positions including structure deflections can be calculated
- Group violations into Work Sites to easily identify clearing areas
- Create vegetation TIN and Work Site DXF/SHP files

Example Reports and Settings – Grow-In

- **Select Grow-In analysis**
- Select vegetation point feature code(s)
- **Confirm clearances**
- Confirm weather condition(s) for analysis
- **Options available for range** of structures, report info and graphical markers

/egetation Check	Structures and Circuits	Report and Markers	Wo
Grow-In			
Type of clearance re	grow-in (violations displaye	tions	
Rectangular: N	Aust violate both borizontal	and vertical clearance r	equiren
Radial: Is viola	ation if total distance to wire	e is less than 'Reg. Vert	. Clear'
Required horizontal a Required clearances	and vertical or radial clearan should include grow-in allow	ces are specified in the ances PLUS required el	feature ectrical
Falling Tree			
Check clearance t	to falling trees (violations dis	splayed with circular ma	rkers)
Tree base assumed t which is the tree bas	to have same X and Y as tre e shifted horizontally toward	e point with Z derived f ds the wire by the root	rom TIN ball rad
Violations are indicate	ed when the arc swept by t	he falling tree contacts	a wire.
Root ball radius (% o	of tree height)		
Clearance allowance	(growth allowance PLUS ele	ctrical clearance)	
Tree height is based that of the closest gr	on height above ground. G ound XYZ point within the m	round elevation is comp naximum horizontal dista	outed fr ance be
If program can't get falling tree will be rep color to the right.	ground elevation from TIN c ported as a questionable vio	or closest ground point lation ('??') and marked	then with th
Maximum horizontal o	distance between tree base	and ground point for g	round ir
Vegetation Feature	Codes		
Vegetation feature of	codes (other codes ignored)	: 3132	
Edit Featu	re Code Table (required clea	arances)	
Horizontal distance fi	rom wire beyond which poin	ts should be ignored	
Note: This command profile offset defined	will consider all points within in Terrain/Terrain Widths to	n specified horizontal di o be considered.	stance
Add optional cond	entrated load or ice to the	span under consideratio	n

? 💌	
for grow-in violation marker	
e a violation Teature code table. le (edit using button at bottom of dialog).	
s.	
for falling tree marker transformed by the provided statement of the p	
L3 10 (ft) 0	
f tree is off edge of TIN then ground elevation is	
for falling tree with unknown ground	
n (ft) 10	
Criteria (weather cases considered)	
(ft) 50 Points no longer need to be within the maximum	
OK Cancel	
	12

Example Reports and Settings – Fall-Ir

- Select Falling Tree analysis
- Select vegetation point feature code(s)
- Confirm clearances
- Confirm weather condition(s) for analysis
- Options available for range of structures, report info and graphical markers

nger Tree Locator			
egetation Check	Structures and Circuits	Report and Markers	Work
Grow-In			
Check vegetation	grow-in (violations displaye	ed with square markers)	
Type of clearance re	quirement for Grow-In viola	tions	
Rectangular: N	Aust violate both horizontal	and vertical clearance r	equiremer
Radial: Is viola	ation if total distance to wire	e is less than 'Req. Vert.	Clear' fro
Required horizontal a Required clearances	and vertical or radial clearan should include grow-in allow	ices are specified in the vances PLUS required ele	feature co ectrical cle
Falling Tree			
Check clearance t	to falling trees (violations dis	splayed with circular ma	rkers)
Tree base assumed t which is the tree base	o have same X and Y as tre e shifted horizontally toward	e point with Z derived fi ds the wire by the root	om TIN or ball radius
Violations are indicate	ed when the arc swept by t	he falling tree contacts	a wire.
Root ball radius (% o	f tree height)		
Clearance allowance	(growth allowance PLUS ele	ectrical clearance)	
Tree height is based that of the closest gr	on height above ground. G ound XYZ point within the m	Fround elevation is comp naximum horizontal dista	uted from ince below
If program can't get (falling tree will be rep color to the right.	ground elevation from TIN o oorted as a questionable vio	or closest ground point t lation ('??') and marked	hen with the
Maximum horizontal o	distance between tree base	and ground point for g	ound inte
Vegetation Feature (Codes		
Vegetation feature of	codes (other codes ignored)	: 3132	
Edit Featu	re Code Table (required clea	arances)	
Horizontal distance fr	rom wire beyond which poin	ts should be ignored	
Note: This command profile offset defined	will consider all points within in Terrain/Terrain Widths to	n specified horizontal dis o be considered.	stance to

1	1		

? 💌	
for grow-in violation marker	
e a violation	
eature code table.	
e (edit using button at bottom of dialog).	
2	
for falling tree marker	
t ground point. Tree pivots about root ball edge	
10	
r dee is on edge of his dien ground elevador is	
for falling tree with upknown ground	
n (ft) 10	
riteria (weather cases considered)	
Cointe no longer need to be within the maximum	
OK Cancel	
	12

Including Structure Deflection in Calculations

- Can be used with Grow-In or Falling Tree analysis
- Structures must be modeled in PLS-POLE or TOWER
- Select either L3 or L4 analysis in *Criteria*/SAPS Finite Element Sag-Tension
- Then run the Grow-In or Falling Tree Analysis

APS Finite Element Sag-Tension
Selection below will affect type of model used when doing finite element sag-tension.
SAPS Analysis Level
C L2 minite element analysis of single section (no interaction between sections) (sequencies) will take longer than for ruling span but still reasonable responsively
 L3 Finite element analysis of system of sections interconnected by stiffness matrice
(sag-tension computations will generally take a few seconds)
Level 3 options
Limit level 3 modeling to PLS-POLE structures, TOWER structures as level
L4 Finite element analysis of system of sections interconnected by full structure m
 (sag-tension computations could take many minutes and use large amounts of
Level 4 options
Limit level 4 modeling to PLS-POLE structures, TOWER structures as level
Limit level 4 modeling to guyed or otherwise asymmetrical structures
Strip joints/members that don't move significantly from level 4 TUWER mod Use Level 2 modeling for display and insulator swing calculations
Insulator Chaining Uptions
This setting applies in situations where a strain suspension or 2-part insulator is sus
suspension or 2 part insulator or swing bracket. It is provided in order to match resu
L2 and L3 FE sag-tension models in PLS-CADD 12.16 and earlier only include insul flexibility or movement of other insulators that support these insulators is not account
Newer versions of PLS-CADD can include these insulators that support other insula and account for their movement.
Turn this feature on for the most accurate model possible on any new projects. Tu insulators and sections sagged or clipped in PLS-CADD 12.16 and earlier to match
L3 and L4 Options for Structure Loads
Limit L3 and L4 structure modeling to structures within specified number of spans Remaining structures will be modeled L2.
Number of spans out to extend L3/L4 structure modeling (0 if want only structure having its loads computed)
Jumper Options
Include jumpers in FE sag-tension model: Note that for L2 this can triple analysis

Power Line Systems, Inc.

i	n	r	ì.	

RAM depending on the model)

8 23

pended from the end of another ilts generated in earlier versions.

lators that support wires. The ited for (unless using L4).

ators in the FE model

rn it off for projects with chained earlier tensions

of structure having load computed

OK Cancel

2

time as model grows from single impact on L3 and L4.

Plan View of Grow-In Violations under Wind Condition

6/19/2019

Power Line Systems

Plan View of Falling Tree Violations under No Wind Condition

6/19/2019

Power Line Systems

Cross Section View of Falling Tree Violations at Angle Structure

Example Reports and Settings – Work Sites

- Can be used with Grow-In or Falling Tree analysis
- Input work site size parameters
- Options available for TIN, **KMZ/KML** and SHP file creation
- Options available for range of structures, report info and graphical markers

r Tree Locator
etation Check Structures and Circuits Report and Markers Work Site
inable work site feature (turn off to disable potentially styw work site / centroid features)
imum separation between points within work site (ft) 100.00
imum work site size (0 to disable) (ft) 400.00
Traw marker labeling distance from centroid min. clear point to wire.
)raw markers indicating work site centroid and points associated with it
raw markers indicating work site centroid perimeter (requires TIN creation)
ture code for work site centroid point Do not create points ~
pordinate for centroid point
9 Z computed from TIN at work site centroid X and Y coordinates
)Zero
g violation TIN options
Create veg. violation TIN (alternate Z value will be distance to wire for use with isoline functions)
OK Cancel

Plan View of Work Sites for Falling Tree Violations

6/19/2019

Power Line Systems

Power Line Systems

IT'S ALL ABOUT YOUR POWER LINES

FAC 008/009 LiDAR Modeling CSA Distribution Line Optimization

GO95

IT'S THE SOLUTION