

Show Your Work! Documenting Engineering Calculations with PLS

Engineers and Consultants

Show Your Work!

I. Show your work!

- Some of the tools included with PLS that help fully document a PLS deliverable.
- Component Library Notes
- Criteria Notes
- Project Report
- Reference Manager

Showing Your Work in PLS

II. Do the work!

- No Red = OK! ...Right?
- Did you find the weakest link? Are you sure?
- Tools and methods to create accurate PLS Models
- Manual Calcs: Exporting Data
- Foundation
- Dead Loads & Drag Areas
- Connections and Anchors (CAN)
- Capacities and Overrides
- Rupture
- Quality Control Checks

Showing Your Work in PLS

I. Show Your Work!

Component Library Notes

Show Your Work: Component Library

- Tower & Pole
- Easy to find
- CAN be "rich text" formatted

Suspension Properties (From file "C:\Users\Public\Documents\PLS\pls_cadd\examples\components\basic.inl")

Suspension Insulator Notes: "Example" Library included with PLS Install There was nothing here?

	Label	Stock	Length	Weight	Wind	Tension	
		Number			Area	Capacity	
			(ft)	(lbs)	(ft^2)	(Ibs)	
1	suspension-prop#1		6.92001	200	0	10000	
2	rte		13.1234	200	0	10000	
3	6ft	TM-1B-138	6	200	0	10000	
4	8ft	TM-1B-345	8	300	0	15000	
3 4	6ft 8ft	TM-1B-138 TM-1B-345	6	200 300	0	10000 15000	

www.mesainc.com | 5

Engineers and Consultants

Showing Your Work in PLS

I. Show Your Work!

- Component Library Notes
- Criteria Notes

Show Your Work: Criteria Notes

- **PLS-CADD** Only •
- **Can NOT be formatted** •
- Can be added to all reports •
 - Lots of notes will clutter short reports •

riteria Notes
Print the following notes at the top of all reports
Updated 06/28/2023 REV.3.1 (corrected structure weight load factor from 1.5 to 1.0 for Rule 250C)
NESC 2023 Medium Loading District Ice Measurement changed to 56 bs:/tt^3, but has decided to keep 57 lbs:/tt^3 as the design NESC Medium Continued Lea and Wind District Loading (Rule 2508) MMPH Extreme Wind Loading (Rule 250C) Compt has may wind speed + 10mph Extreme Lea with MPHF Concurrent Wind Loading (Rule 250D) Maximum Deprating Temperature 212°F/100°C I" Extreme Lea (Non-NESC) Grade B Construction
Structure Load Cases include the Following: Load Case 1: Rule 2508 (Main District) Load Case 2: Rule 2500 [Concurrent (ce and Wind] Load Case 4: Rutime loc Load Case 5: Upfit Load Case 5: Stinging [Rule 25042] Load Case 5: Stinging [Rule 25042] Load Case 6: Camber (self supporting structures only) 1:ft Load Case 9: Rake (self-supporting structures only) Load Case 11: First Crack (concrete only)
Structure Load Notes: LC Note 1: Load factors per NESC 2023, Table 253-1 LC Note 3: Strength factors per NESC 2023, Table 261-1 LC Note 3: Project Engineer is responsible for verifying loading for engineered structures load trees. LC Note 4: Nex angle wind halb e considered in 10-degree increments for LC #1, 2, 3, 4 and 7 LC Note 5: When considering foundation fallues, apply the non-recoverable rotation or deflection on the pole for an everyday load case
Clearance Check Reference Reference 1: 2023 Edition instalator Swing Criteria Line Design Manual Reference 3: Suppersion Instalator Swing Criteria Line Design Manual Reference 4: USHA Reference 4: USHA Reference 5: RUS Design Manual
Vire Tension Note: Engineer responsible for coordinating with Substation Engineering for terminal span designs
Insulator Loading Reference Load Case 12 Rule 277 (Rule 2508) Load Case 13 Rule 277 (Rule 2500) Load Case 14: Rule 277 (Rule 2500)
Insulator Note 1peolines the insulator strength properties in PLS-POLE's Company with the lowest combined value from all ma Insulator Note 2. NESC Rule 27 specifically excludes Rule 230 Load Factors for checking the mechanical strength of insulators. The Insulator Note 3. Insulators in PLS-Pole Component files use the recommended SF with the exception to glass supension bell insulators. The
Guija or associated hardware loading is based upon the following references: Reference 1: 2023 NESC, Rule 2648 Reference 2: Child Line Design Marual Chapters
DISCLAIMER:

Crite

www.mesainc.com | 7

Engineers and Consultants

Showing Your Work in PLS

I. Show Your Work!

- Component Library Notes
- Criteria Notes
- Project Report

- CADD, Pole, Tower
- CAN be "rich text" formatted
- This is one good option for general model notes
 - What, When, Who, Why?
 - Engineering notes and calcs
 - References used for creation
 - Standards and deviations
- "Enable Automatic Project Revision Tracking"

Window Help

Insert your notes, comments, pictures, etc. here. You can also check the "Enable Automatic Project Revision Tracking" option in the General Data dialog and the program will automatically append a list of changes made to this model to the end of this report. This report is automatically saved whenever you save your project.

Previous Project Rep<mark>ort has been archived in the Reference Manager:</mark>

Drafting

www.mesainc.com | 9

Engineers and Consultants

Build Notes 500kV Type Tower Light tangent V-String Suspensio	On General Data:		
Model prepared for By MVRK Engineers, Inc., and Mer.	Tension-only members were limited to 90% Member Strength & Crossing Diagonal check Connection Rupture, Included Angles, and	of maximum compression capacity. s per ASCE 10. Climbing Loads are <u>NOT</u> checked per client r	
Non-Family-Managed model created Extensions: N/A Legs: N/A	A Redundant braces: All redundant members are included in the Redundant members are checked against the	model. actual force in the member.	
Engineers: Originator: Tony Cuñha, Pi Checkers: Robert Smith	Joints: Tower Geometry defined using the Engineer the Masts, the engineering work points ha knock-down format. Thus, the joints of t	Sections Table: Dead load factors:	zing
Additional information: A file called "Detailed Rep the .bak file. It contains much Project Report.	Bolt Properties:	XARM and BRIDGE sections have an extra <u>Wind Drag Area:</u> 10% is assumed to account for gusset	
Reference drawings: Design Criteria: The Shts 1: Design Diagrams: The to	Shear strength 16.65 kips per ASTM A394 Holes are assumed drilled for member thic dimension). Otherwise, holes are assumed y Ultimate Stress Fub = 74ksi.	SWING ARM and BRIDGE sections have an e Face, All, and SAPS Angle columns we Only one face is considered for Wind	d case)
Erection Drawings:	Steel Material Properties:ASTM A36: F_y = 36ksi, F_u = 58ksiASTM A572Gr.50: F_y = 50ksi, F_u = 65ksi	Member Face Overrides: Member face overrides were assigned to the only assigned the members of the Windward masts is explicitly described in the origi	lefault oth
	Angle Properties: All angle properties were taken from the A w/t ratios were calculated per ASCE 10	Automatic Change Documentation: Any text after the line below was automati saved. Any changes should be reviewed then incorporated in a new revision. If any cha	270 re-
	are loaded axially. Similarly, the membe	add appropriate dates, notes, etc. Once th should be deleted (Note: At least one save project report are saved. No changes are r	this ed"

Tower Version 19.01x64	
[CLIENT] [V] kV [Double/Single] Circuit Tower Type [TYPE] - Build Notes	
Received from [CLIENT] on [DATE] This model was originally created on [DATE] in Tower version [V], by [CREATOR/ENGINEER/CHECKER/UTILITY/ETC].	
Modified by Mesa Associates for [CLIENT] project [NO.], structure [NO.] on [CIRCUIT NAME]	/LINE
[INSERT MESA ORIGINATOR, CHECKER, REVIEWER, EOR AS REQ'D]	
 Changes by Mesa: {VERIFY/UPDATE} [Created this Project Report. The original Project report was automatically created over time as the model was updated/saved and consisted of over NN pages of text. report was archived to a .rtf file and attached using the Reference Manager.] Added existing modifications for PCS support, including center PowerMount, stem mounts, and additional bracing. 	ted That sector
Reference drawings: {UPDATE} Design Drawings:	
[DESIGN DATA DRAWINGS (IF AVAILABLE)]	Rupture: {VERIFY}
Erection Diagrams: [ERECTION DRAWING NUMBER(S)]	Rupture Check not included at client request.
Detail Drawings: [DETAIL DRAWING NUMBER(S)]	Oblique leg bracing angles are assumed to not provide support in the out-of-plane direction.
Tower Modeling Specification: [Client - Title of Spec]	Other Comments: {VERIFY} The model as received from did NOT include redundant braces, and <u>adding</u> redundant braces was not within the scope of this project. The section table does include factors to increase wind area to account for the missing redundant braces.
	Automatic Revision Tracking is on. Any changes below this line were <u>added</u> automatically by PLS-Tower. ************************************

- Voltage(s)
- Structure Line Angle
- Family/Framing/Grid Managed vs. Single Structure
- Weather Cases
- Load Cases

When?

- When was the line / structure built?
- When was the model created / modified?
- When was LIDAR flown?
- Include model file Revision History

www.mesainc.com | 12

Engineers and Consultants

Who?

- Who owns the physical line/ structure?
- Who originally created the model?
- Who is modifying the model?
- Engineer, Checker, Reviewer, Company

Why?

- Why are you creating or modifying this model?
- General use structure, or site specific?
- If site specific, why?

Other (CADD):

- Any and all Assumptions!
- List of Line Edits with descriptions
- Single or multiple circuits w/ names
- Summary of wire sizes & tensions
- Is stringing from LIDAR and weather at time of survey, or Design RS
- When was LIDAR flown and by whom
- One or multiple LIDAR flights
- Any modifications after LIDAR
- Standard or special weather cases
- What load cases are considered and why

Other (Pole/Tower):

- Any and all Assumptions!!!
- List materials and how you know
 - Are materials known or assumed?
 - If known: Clear on drawings or testing?
 - Assumed: Justify assumptions
- Are all redundant braces modeled?
- Key "General" tab options:
 - % Compression in T-Only?
 - Redundant braces included in analysis?
 - Is Rupture checked, and how?
 - Which design code(s) & edition(s)
- Possibly include calculations
 - Custom Angle properties
 - Section table, rupture, net section
 - Only if short... if complicated use Reference Manager

Formatting

- Supports "Rich Text" formatting
- Supports pasting images
- Select text, right click on selected text, click "Font..."
- If you right click without any text selected it selects all text automatically
- Tip: Create default formatted templates using MS Word (or similar) then copy-paste into the Project Report

PLS-CADD Version	10 01-04	C. 27.17	ъм т
Mesa Associat	Print		
Project Name:	Cut	Ctrl-X	rgy
Insert your n	Сору	Ctrl-C	et
"Enable Autom and the progr	Paste	Ctrl-V	cki end
to the end of	Font		τi
your project.	Autosize Font		
Previous Projec	t Report has	been arch:	ived

w General Components Geometry Loads Moc General Data p al Output Options Post Processor Options Wood Pole Buckling Assumptions EIA Options Interaction Diagram Options Reference Manager	General Data Project Title Double Circuit Tubular Steel Davit Arm Project Notes Structure for Demo Project Enable Automatic Project Revision Tracking During Each Project General Data	Structure	<u>- 3- Ez-</u>
Reference Manager	Label	Default	Value
	1 Project Name		
	2 Line Name	ACTIVE DESIGN	
	3 Line Code		
ons Lines Drafting Window Help	4 Voltage	161 (kV)	
A Reports	5 Company	Mesa Associates	
Design Rule Check	6 Company Division		
File Reference Check	7 Last Inspection Date		
v .	8 Thermal Rating (deg)		
General Data	9 Last Thermal Rating Date		
Edit	10 Vegetation Survey Date		
Merce	11 Last Vegetation Analysis		
	12 Right of Way Width	150 (ft)	
	PLS-GRID Options	· Project Options	natic Project Revision Tracking During Each Save

www.mesainc.com | 16

Nesa Associates, Inc. Engineers and Consultants

Showing Your Work in PLS

I. Show Your Work!

- Component Library Notes
- Criteria Notes
- Project Report
- Reference Manager

- Different from "Attachment Manager"
- Any file type may be attached
- Examples:
 - Cover Letter (EOR Stamp)
 - External Calculations
 - Strength, Component Properties
 - Sketches
 - Fabrication Drawings
 - Partial if too big
 - QC Documentation
 - Automatic Revision History

Associates, Inc. Engineers and Consultants

I. Show Your Work!

- Component Library Notes
- Criteria Notes
- Project Report
- Reference Manager

II. Do the work!

- Manual Calcs: Exporting Data
- Foundation
- Dead Loads & Drag Areas
- Connections and Anchors (CAN)
- Capacities and Overrides
- Rupture
- Quality Control Checks

Why bother?

- Structure Check -> No Red? Yay! -> Move on
- Many pole models only accurately model the tubes, but often other things "control"
- Lattice Towers are complex 3-Dimensional structures
 - Full-scale testing often reveals unexpected failure points
 - Framing eccentricities can have a huge effect on strength
 - The only loads that you *know* work are the full-scale test loads
- If you don't locate the weak spot gravity WILL do it for you

Notes:

1. Can be checked using "Rupture", sometimes.

2. Can be checked, but method is limited to the version in the Appendices of the referenced version

of ASCE 48. This is the "bend line" method for -05 and the "Wedge" method for -11 and -19. Many fabricators use their own proprietary baseplate design methods.

www.mesainc.com | 21

Associates, Inc. Engineers and Consultants

Item	Pole	Tower	Solution?
Vang tear-out	Х	X	CAN
Anything welded	Х	X	CapOver or CAN
Foundation capacity	Х	X	Foundation or CAN
Concrete anchorage	Х	X	Foundation or CAN
Bolts in combined Tens. and Shear	Х	X	CapOver or CAN
Bolt spacing, end dist., edge dist		X	Rupture, CapOver or CAN
Block Shear		X	Rupture, CapOver or CAN
Bending / Moment		X	CAN?
Non-standard shapes		X	CapOver or CAN
Anything not steel		X	CapOver
Component Connections	Х		CAN
Some Holes in Tubes	Х		Manual
Baseplate capacity	Х		Baseplate, Foundation, or CAN

• Bending moment in Tower: NOT CHECKED under ASCE 10!

- X and Y Bending moments now respect Beta angle
- Belgian NNA code DOES check bending stress

ASCE 10: Any load resisted by bending is

Excessive Moment Warning

• The effect of beams is minimal in a well-triangulated tower

 Beams in a poorly-triangulated tower can mask a critical modeling error

www.mesainc.com | 23

Engineers and Consultants

I. Show Your Work!

- Criteria Notes
- Project Report
- Reference Manager

II. Do the work!

Manual Calcs: Exporting Data

- Output Report: Right click in report, "Table View"
- Left click upper-left cell
- "Copy" or "Copy with Column and Row Headings"

XML Export

- Output Reports or "Input Echo" report
- Right click in report -> XML Export
- Individual tables from a report or "Export All"

Direct data mining

- All PLS files are basic text
- Not suggested unless you know what you are doing

I. Show Your Work!

- Criteria Notes
- Project Report
- Reference Manager

II. Do the work!

- Manual Calcs: Exporting Data
- Foundation

No Red = OK? Foundations

Everyone designs foundations, baseplates, concrete anchorage, etc. to the max capacity of the structure... right?

Unless the owner wants to save money:

A Foundation Cost Comparison: Alternate Methods of Specifying Loads for the Design of Rigid Base Tower Foundations

For 500kV transmission line, the estimated foundation costs made up 21% of the total estimated construction cost for the entire project. Although the sign bas historically designed foundations using the tower's ultimate design loads, this was identified as an area of potentially significant cost savings. With sophisticated transmission line design software and minimal additional effort by the engineer, the foundations could, in effect, be optimized when designed using site or leg specific tower loads.

No Red = OK? Foundations

Everyone designs foundations, baseplates, concrete anchorage, etc. to the max capacity of the structure... right?

Unless strength doesn't control the structure design:

160-ft 2/c DE Monopole, 105.25" B.C. Anchor for major crossing span High-visibility, high traffic location Maximum Design Data GLM = 10,655 ft-kip Design was controlled by deflection limits Maximum Design Data Pole Stress = 27.9%

NOTE	S:				
1.	MAXIMUM DESIGN REAC	TION AT BA	SE (INCLUE	des 1 olf).	
	MAXIMUM MOMENT TAKE	IN FROM 50)% POLE MO	DMENT CAP	ACITY.
	MAXIMUM FORCES TAKE	N FROM BA	ick span [DEAD-END	GO-95 LIGHT LOAD.
		TRAN-X	LONG-Y	AXIAL-Z	
	MOMENTS (FtKips)	0.0	14646.0	0.0	
	FORCES (Kips)	22.49	46.8	94.35	
	RESULTANT MOMENTS:	14646.0	FtKips		

No Red = OK? Foundations

- Pole: Geometry -> Miscellaneous -> Foundation Strength
- Tower: Geometry -> Foundation Strength

Fo	undat	tion Strength																	
Г		Restrained	Long.	Trans.	Horz.	Comp.	Uplift	Resultant	Trans.	Long.	Bending	Torsional	Long.	Trans.	Vertical	Long.	Trans.	Vertical	Run CAISSON
		Joint	Shear	Shear	Shear	Capacity	Capacity	Capacity	Moment	Moment	Moment	Moment	Stiffness	Stiffness	Stiffness	Rotational	Rotational	Rotational	Design and
		Label	Capacity	Capacity	Capacity				Capacity	Capacity	Capacity	Capacity			1	Stiffness	Stiffness	Stiffness	Analysis
			(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(ft-lbs)	(ft-lbs)	(ft-lbs)	(ft-lbs)	(lbs/ft)	(lbs/ft)	(lbs/ft)	(ft-lbs/deg)	(ft-lbs/deg)	(ft-lbs/deg)	
	1	Pl:g	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	No

- Round Conc. Pier: Horiz. Shear, Compression, Uplift, Moment Capacities
- If you add Foundation Strength: Show Your Work!

No Red = OK? Baseplates

Added as part of pole definition

Steel Pole	Stock	Length	Default	Base	Shap
Property	Number		Embedded	Plate	
Label			Length		
		(ft)	(ft)		
DE-135		135.00		[dit (6 bolts)	12T

- Design limited to commentary in code specified in General tab
- Current code doesn't do well with clustered anchor bolts
- Many vendors qualify baseplates with their own testing

Base Pla	ate - [DE-135]			?	×
Enter 0 otherwis	for the thickness if you v se, it will check the plate	vant the program to des with the thickness you	ign your base pla input.	ate;	
Plate sh	nape O 12T	🧹 🗸 🗸	isity (Ibs/ft^3) 490	
Plate di	iameter (in) 75.5	Bolt patte	ern diameter (in) 69.5	
Hole sh	iape 🗢 122	🧹 Bolt diam	eter (in) 2.25	
Hole dia	ameter (in) 55	Plate ste	el yield stress(ksi) 50	
Plate th	iickness (if 0 program wil	determine by ASCE/SI	El 48) (in) 3	
Bend lin	ne length override		(in) 0	
will mult	a single quadrant. The p iply these coordinates by	program assumes the participation of the bolt pattern radius	attern is doubly s (1/2 the diamete	ymmetric a r above).	and
will mult	a single quadrant. The p iply these coordinates by Bolt X	program assumes the part of the bolt pattern radius Bolt Y	attern is doubly s (1/2 the diamete Bolt	ymmetric a r above).	and
will mult	a single quadrant. The j iply these coordinates by Bolt X Coord.	program assumes the p the bolt pattern radius Bolt Y Coord.	attern is doubly s (1/2 the diamete Bolt Angle	ymmetric a er above).	and
will mult	a single quadrant. The j iply these coordinates by Bolt X Coord.	orogram assumes the put the bolt pattern radius Bolt Y Coord.	attern is doubly s (1/2 the diamete Bolt Angle (deg)	ymmetric ; r above).	and
will mult	a single quadrant. The piply these coordinates by Bolt X Coord. 0	orogram assumes the po the bolt pattern radius Bolt Y Coord.	ttern is doubly si (1/2 the diamete Bolt Angle (deg)	ymmetric ; r above).	and
vill mult	a single quadrant. The j iply these coordinates by Bolt X Coord. 0	Bolt Y Coord.	ttern is doubly s (1/2 the diamete Bolt Angle (deg)	ymmetric ; er above). 0 18	And
vill mult	a single quadrant. The j iply these coordinates by Bolt X Coord. 0 0	Bolt Y Coord.	ttern is doubly s (1/2 the diamete Bolt Angle (deg)	ymmetric (r above). 9 0 18 36	And
vill mult	a single quadrant. The pipp these coordinates by Bolt X Coord. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bolt Y Coord.	ttern is doubly s (1/2 the diamete Bolt Angle (deg)	ymmetric (r above). 0 18 36 54	and
bolts in will mult	a single quadrant. The pipp these coordinates by Bolt X Coord. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bolt Y Coord.	Bolt Angle (deg)	ymmetric ; r above). 0 18 36 54 72	and
1 2 3 4 5 6	a single quadrant. The pipp these coordinates by Bolt X Coord. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bolt Y Coord.	Ittern is doubly s (1/2 the diamete Bolt Angle (deg)	ymmetric c r above). 0 18 36 54 72 90	and

I. Show Your Work!

- Component Library Notes
- Criteria Notes
- Project Report
- Reference Manager

II. Do the work!

- Manual Calcs: Exporting Data
- Foundation
- Dead Loads & Drag Areas

Features: Dead Loads & Drag Areas

- Used to add point weights and wind areas
 - More precise than modifying the Sections table
 - Similar to the Equipment Library, but more flexible

Example uses

- Ladders, stairs, platforms
- Signs, solar panels, lights
- Antennas / "Joint Use" attachments

• Are part of the base model

- Can complicate Tower Family Managed models
- Must take care if redundants are excluded from FEA model

If DL&DA are added to a model: Show Your Work!

Features: Dead Loads & Drag Areas

Associates, Inc. Engineers and Consultants

lesa

s	Geor	metry	Loads	Model	Drafting	Window				
_		Prima	ary Joints	i						
		Seco	ndary Joi	nts						
	 Prompt For Joint Label On Creation 									
		Rena	me Joint							
		Chan	ige Leg S	lope						
		Sectio	ons			>				
		Grou	ps			>				
		Mem	bers			>				
		Guys								
		Adjus	st Guy Te	nsions						
		Cable	25							
		Conn	ections	and Anch	ors					
		Equip	oment							
		Dead	Loads a	nd Drag A	reas					
		Foun	dation St	trength						
	Linear Appurtenances									
		Insula	ators			>				
		PLS-0	CADD			>				

Jeau	Loaus	anu	Diag	Areas	

Deed Leads and Deep As

	Load Point Label	Attach Point	Vertical Dead Load (kips)	Transverse Wind Area (ft^2)	Longitudinal Wind Area (ft^2)
1	Sign	115	0.253	4	0.68
2					
3					

Show Your Work!

I. Show Your Work!

- Component Library Notes
- Criteria Notes
- Project Report
- Reference Manager

II. Do the work!

- Manual Calculations
- Foundation
- Dead Loads & Drag Areas
- Connections and Anchors (CAN)

- Vangs
 - Tear-out strength
 - Limit a M4 model to full-scale test loads
- Pole arm connections
- Bolts in combined tension/shear
- Multi-member connections
- Swing bracket attachments
- Non-axial forces in Tower
- Many other possibilities

Associates, Inc. Engineers and Consultants

- Component Library must be defined first
 - Moment Capacities only usable in Pole
- Assign Labels so failure is easily identified
- Multiple CANs may be required to check a single point
- Provide Ultimate Strength, then Strength Factor
- If you create a CAN: Show Your Work!

www.mesainc.com | 37

Engineers and Consultants

Vang Tearout: Manual Calc

Vang Tearout CAN

CAN	Stock	Strength	Strength	Resultant	Long.	Tran.	Vert.	Long.	Long.	Tran.	Tran.	Vert.	Vert.	M-Long.	M-Long.	M-Tran.	M-Tran.	M-Vert.	M-Vert.
roperty Lab	• Number	Factor	Check	Capacity	Shear	Shear	Shear	Pos.	Neg.	Pos.	Neg.	Pos.	Neg.	Pos.	Neg.	Pos.	Neg.	Pos.	Neg.
					Cap.	Сар.	Cap.	Сар.	Cap.	Cap.	Cap.	Cap.	Cap.	Capacity	Capacity	Capacity	apacit	Capacity	apacit
				(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(ft-k)	(ft-k)	(ft-k)	(ft-k)	(ft-k)	(ft-k)
Vang566		Steel	Independent	16.172	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vang624		Steel	Independent	16.172	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vang650		Steel	Independent	16.172	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CAN	Attach	CAN	Azimuth	zimuth/Connect	\zimuth/Connect1	Connect2	Connect2	Connect3	Connect3	Connect4	Connect4	Connect1	Connect1
Label	Label	Property		Member	Member	Member	Member	Member	Member	Member	Member	Insulator	Insulator
		Set		Туре	Label	Туре	Label	Туре	Label	Туре	Label	Туре	Label
			(deg)										
Vang-ShldB	4TS	Vang566	0									Strain	1-1
Vang-ShlA	4TS	Vang566	0									Strain	11-1
Vang-ShldT	4P	Vang566	0									Strain	26-1
Vang-ShldB2	4P	Vang566	0									Strain	12-1
Vang-CTLB	7P	Vang624	0									Strain	3-1
Vang CTI N	7.0	VanasaA	0									Cturin	12 1

Vang: Original Design Data Loads

	CAN	Stock	Strength	Strength	Resultant	Long.	Tran.	Vert.	Long.	Long.	Tran.	Tran.	Vert.	Vert.	Ν
	^o roperty Label	Number	Factor	Check	Capacity	Shear	Shear	Shear	Pos.	Neg.	Pos.	Neg.	Pos.	Neg.	
						Cap.	Cap.	Cap.	Cap.	Cap.	Cap.	Cap.	Cap.	Cap.	C
					(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	
1	Cond_Long		Steel	Independent	0	0	0	0	0.5	0.5	0	0	0	0	
2	Cond_Trans		Steel	Independent	0	0	0	0	0	0	<mark>9.75</mark>	9.75	0	0	
3	Cond_Vert		Steel	Independent	0	0	0	0	0	0	0	0	22.5	22.5	
4	Shld_Long		Steel	Independent	0	0	0	0	0.5	0.5	0	0	0	0	
5	Shld_Trans		Steel	Independent	0	0	0	0	0	0	1.5	1.5	0	0	
6	Shld_Vert		Steel	Independent	0	0	0	0	0	0	0	0	2.55	2.55	

<u>Note</u>: Currently can only be attached to a structure joint, so doesn't work with V-Strings or chained insulators

Pole / Arm Connection Positive Vert. Moment 33 sitive Long. Moment Positive Trans Moment Positive Trans Force (Y-axis) Positive Long Force (X-axis) Positive Vert. Force (Z-axis) Figure 3.7-1 CAN Coordinate System 31:C 31 E V2LB VCTL 31B

CAN	Stock	Strength	Strength	Resultant	Long.	Tran.	Vert.	Long.	Long.	Tran.	Tran.	Vert.	Vert.	M-Long.	M-Long.	M-Tran.	M-Tran.	M-Vert.	M-Vert.
Property Label	Number	Factor	Check	Capacity	Shear	Shear	Shear	Pos.	Neg.	Pos.	Neg.	Pos.	Neg.	Pos.	Neg.	Pos.	Neg.	Pos.	Neg.
					Cap.	Capacity	Capacity	Capacity	Capacity	Capacity	Capacity								
				(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(ft-k)	(ft-k)	(ft-k)	(ft₋k)	(ft₋k)	(ft₋k)
12ftArmConn		Steel	Interaction	0	0	0	0	0	0	0	0	0	0	150	150	0	0	200	200

CAN Label	Attach Label	CAN Property Set	Azimuth	Azimuth/Connect1 Member Type	Azimuth/Connect1 Member Label
			(deg)		
12ftBrkt_Lt	VCTL	12ftArmConn		Tubular Davit	41
12ftBrkt_Rt	VCTR	12ftArmConn		Tubular Davit	41

Arm is along Positive Trans axis (Green Arrow)

- M-Long: From Vertical Load
- M-Trans: Torsion
- M-Vert: From Longitudinal Load

Mesa Associates, Inc. Engineers and Consultants

I. Show Your Work!

- Component Library Notes
- Criteria Notes
- Project Report
- Reference Manager

II. Do the work!

- Manual Calcs: Exporting Data
- Foundation
- Dead Loads & Drag Areas
- Connections and Anchors (CAN)
- Capacities and Overrides

- Only checks axial forces
- Required if Tower cannot calculate capacities
 - Rupture, if Rupture isn't checked
 - Non-Standard Shapes
 - Anything not Steel
 - Welded connections
 - Axial load limited by bending

/	Primary Joints Secondary Joints Prompt For Joint Label On Creation Rename Joint Change Leg Slope		》 新秋节 ま 古 裕 - -
	Sections	>	
	Groups	>	
	Members	>	Table Edit
	Guys		Capacities and Overrides
	Adjust Guy Tensions		

Help

Geometry Loads Model Drafting Window

Membe	er Capacities ar	d Overrides																
z x		ŀ					Model No err	Check Repo	ort levant wa:	rnings det	ected.					-		
	Member Label	Group Label	Design Comp. Capacity	Comp. Control Criterion	Des Ten Cap	Override Comp. Capacity	Override Comp. Capacity Unsup.	Override Comp. Control Criterion	Override Tension Capacity	Override Tension Control Criterion	Override Face Member ship	Override Climbing Status	Override Climbing Load	Override RL Climb	Heuristic Beta	Override Beta	Note	
			(кірз)	- (-	(кі	(KIPS)	(KIPS)		(KIPS)		_		(IDS)		(deg)	(aeg)		
143	674P	674	21.6888	L/r		9.3	NA		19.9	~	Trans.	Automatic	0	0	180	0	Limit to test load	Rupti
144	6770	674	21.6888	L/r		9.3	NA NA		19.9	Net Sect	oth	Automatic	0	0	270	0	Limit to test load	Rupti
145	677Y	677	20.9165	L/1 L/r		0	NA		0	Shear Bearing	rans.	Automatic	0	0	180	0		
147	65-2P	65-2	38.9216	L/r	41.	0	NA		0	Rupture	rans.	Automatic	0	0	270	0		
148	65-2Y	65-2	38.9216	L/r	41.	0	NA		0	RTE Edge	oth	Automatic	0	0	180	0		
149	65-2AP	65-2	38.9216	L/r	41.	0	NA		0		Automatic	Automatic	0	0	180	0		
150	65-2AY	65-2	38.9216	L/r	41.	0	NA		0		Automatic	Automatic	0	0	270	0		
151	615P	615	.0885752	L/r	11.	0	NA		0		Trans.	Automatic	0	0	188.314	0		
152	615Y	615	0.0885752	L/r	11.	0	NA		0		Both	Automatic	0	0	261.686	0		

Member Capacities and Overrides		Angle Member Connectivity	# 1 ? ×
	Model Check Report No errors or relevant warnings detected.	Isometric View Angle '610P' Group '610' Other A-7 SAU 2X2.5X0.25 Dimensions (in) b = 3.0000 a = 2.5000 t = 0.2500 L = 131.04 0/4*=1/4*=304 (607)	Connection View ✓ Model Check Report No errors or relevant warnings detected.
Member Label	610P	nb = 2	CGt
Group Label	610	-nh = 1.0000 d = 0.7500	
Design Comp. Capacity (kips)	21.6888	h = 0.8750	
Comp. Control Criterion	L/r	e = 1.2500	CG
Design Tension Capacity (kips)	22.5	s = 4.0000 f = 1.2500	
Tension Control Criterion	Shear	g = 0.0000	i i i
L/r	139	Wgt = 49.1 (lbs)	
Length (ft)	10.920	Capacities (kips)	
L/r Comp. Capacity (kips)	21.6888	X Y Overridden ??	
Connection Shear Capacity (kips)	22.5	· · · · · · · · · · · · · · · · · · ·	
Connection Bearing Capacity (kips)	32.6249	Member Label	610
Net Section Tension Capacity (kips)	28.6976	Member Laber	010
Rupture Tension Capacity (kips)	0		
RTE End Dist. Tension Capacity (kips)	0		
RTE Edge Dist. Tension Capacity (kips)	0	Connect Medifier	\sim
Override Comp. Capacity (kips)	9.3	Connect. Modifier	
Override Comp. Capacity Unsup. (kips)	NA		OK Cancel Overrides
Override Comp. Control Criterion			
Override Tension Capacity (kips)	19.9		
Override Tension Control Criterion		-	
Override Face Member ship	Trans.		
Override Climbing Status	Automatic	Note: This version (ONI V edits the "Primary"
Override Climbing Load (lbs)	0		oner cares the rinnary
Override RL Climb	0	member. Click the 1	Transpose button to undate
Heuristic Beta (deg)	180		indispose sation to apadic
Override Beta (deg)	0	members created b	v symmetry.
Note			,
Warnings or Errors			
OK	Cancel		www.mesainc.com 47

Tower can only calculate strengths using these shapes

www.mesainc.com | 48

Nesa Associates, Inc. Engineers and Consultants

www.mesainc.com | 49

IVIESA Associates, Inc. Engineers and Consultants

With the excluded shapes, Tower CANNOT calculate strengths of:

- L/r Buckling
- Rupture

If varying thicknesses:

- Net Section
- Bolt Bearing

Tower CAN calculate:

• Bolt Shear

Mesa Associates, Inc. Engineers and Consultants

Nesa Associates, Inc. Engineers and Consultants

If you override the capacities, face membership, or heuristic beta of any members...

Show Your Work!

I. Show Your Work!

- Criteria Notes
- Project Report
- Reference Manager

II. Do the work!

- Manual Calculations
- Foundation
- Dead Loads & Drag Areas
- Connections and Anchors (CAN)
- Capacities and Overrides
- Rupture

- More than just Block Shear
- End Distance, Edge Distance, Bolt Spacing
 - Current ASCE 10 requires reducing the strength of ALL bolts if any ONE bolt is too close to the end, edge, or another bolt
 - Can be entered as default values in the Angle and Bolt libraries
 - If short edge distance is entered into both bolt and angle tables, the angle table value is used.

Label Diameter Diameter Shear End Bolt Capacity Capacity Stress Capacity Distance Spacing Hyp. 1 Hyp. 2 Fub (in) (in) (kips) (in) (in) (kips) (kips) (kips)	Bolt	Bolt	Hole	Ultimate	Default	Default	Shear	Shear	Ultimate	Short
CapacityDistanceSpacingHyp. 1Hyp. 2Fub(in)(in)(kips)(in)(in)(kips)(kips)(kips)	Label	Diameter	Diameter	Shear	End	Bolt	Capacity	Capacity	Stress	Edge
(in) (in) (kips) (in) (kips) (Capacity	Distance	Spacing	Hyp. 1	Hyp. 2	Fub	Dist.
		(in)	(in)	(kips)	(in)	(in)	(kips)	(kips)	(ksi)	(in)

Angle	Angle	Long	Short	Thick.	Unit	Gross	w/t	Radius of	Radius of	Radius of	Angle	Wind	Short	Long
Туре	Size	Leg	Leg		Weight	Area	Ratio	Gyration	Gyration	Gyration	Cross	Width	Edge	Edge
								Rx	Ry	Rz	Section		Dist.	Dist.
		(in)	(in)	(in)	(lbs/ft)	(in^2)		(in)	(in)	(in)		(in)	(in)	(in)

www.mesainc.com | 55

Engineers and Consultants

"Single" gage line

- Tower can handle
 - Multiple gages requires entering Shear and Tension path lengths

Short Edge Dist. (in)	1.5
Long Edge Dist. (in)	0
End Dist. (in)	1.25
Bolt Spacing (in)	2.6875
Shear Path Length (in)	0
Tension Path Length (in)	0
Rest. Coef.	0

Mesa Associates, Inc. Engineers and Consultants

Multiple gage lines: Regular

- MUST enter Shear and Tension Path Length values
 - These must be manually calculated

For "sloped" tension segments use net section modification:

- Horizontal distance, minus extra bolt hole, plus (s²/4g)
- For left condition, also check straight horizontal path without hole

Engineers and Consultants

Multiple gage lines: The really fun ones

Engineering judgement, and VPL and TPL are required

I. Show Your Work!

- Component Library Notes
- Criteria Notes
- Project Report
- Reference Manager

II. Do the work!

- Manual Calcs: Exporting Data
- Foundation
- Dead Loads & Drag Areas
- Connections and Anchors (CAN)
- Capacities and Overrides
- Rupture
- Quality Control Checks

Every company here has an official QC Procedure, right?

Memb	e Memb	Grou	Section	Symmetry	Origin	End Joint	Ec R	e Ra	Ra Ra	Bolt Typ	pe			Connect	Short	Long E	ad B	olt She:	r Tens	i Rest	. Conn	R	Member	Mem	Gro Se	ti Synn	etr Ori	gi End	Ec F	le Rati	Rati Rati	Bolt Type			Connect	1	
r Labe	l er	Р	Label	Code	Joint		c. 5t	tio	tio tio		P	Bolt Bo	It She	a Leg	Edge	Edge D	ist. Sp	aci Pat	h 0h	Coef	. ect.	•	Label XML	ber	up o	• y Co	de a	Join	t c. s	t. 0	0 0		Bolt	Bol Sh	e Leg	RDS Comments	Response
XP	- Lai 🚽	ЦГ ₋ -			r 🔍	_	T	I	Y Y			T			Di	Di 🚽 🕻	T	y Lei	- Pi -	-	M V			Label	Lab La	el	Joi	at	Co C	o RLX	RLY RLZ		5	t ar			
2020	2025	202	0.40	VV Suppose	20	102				24 4294 TO 5	Dueskad	6 2	P	Rath	<u>u</u> .	ų. –			Lei		n		2020	2025	el	0 XX-8		102	ded	le l		MARCH TO Durch	4	Hol Pla	Bask		
2000	2031	203	OWP	X1-Symmetry XX-Summetry	102	1000	1 4			244 4294 TO F	Durahad	0 2		Sheet calu	0	0	0	0 0	0	0			2038	2001	203 0	/D XX-Sum	metri 20	2 1000				14 A294-TO_Putch		-	Short or		
2030	205	203	GWP	XY-Symmetry	30	115	1 4		1 1	3/4 4394-T0_P	Punched	6 2	1	Both	0	0	0	0 0	0	0		8	2058	205	203 01	/P YY-Sum	moter 30	0 110				V4 A394-T0_Punch	6	2 1	Both	4	
20160	2016	201	GWP	XY-Symmetry	115	110P	1 4		1 1	3/4 4394-T0_P	Punched	2 2	1	Short only	0	0	0	0 0	0	0		12	2015P	2018	201 61	/P YY-Sum	moter 11	S 110P				VA 4394-T0_Punch	2	2 1	Short on		
2078	207	207	GWP	XY-Summetry	30	105	3 4		1 1	3/4 4394-T0 5	Punched	1 1	1	Long only	ů.	ů.	ů i	0 0	ň	ň		16	2079	207	207 61	/P XY-Sum	moter 31	2 105	3	4 1		VA A334-TO Punch	1	<u> </u>	Long only	-	
203P	203	203	GWP	XY-Summetru	105	115	3 4	1	1 1	3/4 A394-T0_F	Punched	1 1	1	Long only	0	0	0	0 0	0	0		20	203P	203	203 G	P XY-Sum	metre 10	\$ 115	3	4 1	1 1	14 A334-T0 Punch	1	1 1	Long only		
210P	210	210	GWP	XY-Summetru	11\$	100P	3 4	1	1 1	3/4 A394-T0_F	Punched	1 1	1	Long only	0	0	0	0 0	0	0		24	210P	210	210 GV	P XY-Sum	motre 11	S 100P	3	4 1	1 1	14 A394-T0 Punch	1	1 1	Long only		
211P	211	211	GWP	Across-Rot	2P	10 Y	3 4	1	1 1	3/4 A394-T0_F	Punched	1 1	1	Long only	0	0	0	0 0	0	0		28	211P	211	211 G	P Across	Rot 2	P 10Y	3	4 1	1 1	24 A394-T0 Punch	1	1 1	Long only		
212P	212	212	GWP	Across-Rot	10Y	105	3 4	1	1 1	3/4 A394-T0_F	Punched	1 1	1	Long only	0	0	0	0 0	0	0		30	212P	212	212 GV	P Across-	Rot 10	Y 10S	3	4 1	1 1	14 A334-T0 Punch	1	1 1	Long only		
213P	213	213	GWP	Across-Rot	10\$	100Y	3 4	1	1 1	3/4 A394-T0_F	Punched	1 1	1	Long only	0	0	0	0 0	0	0		32	213P	213	213 GV	P Across-	Rot 10	\$ 1001	3	4 1	1 1	4 A394-T0_Punch	1	1 1	Long only		
205P	205	205	GWP	Across-Rot	3Y	115	3 4	1	1 1	3/4 A394-T0_F	Punched	1 1	1	Long only	0	0	0	0 0	0	0		34	205P	205	205 G	P Across-	Rot 3	P 11Y	3 .	4 1	1 1	4 A394-T0_Punch	1	1 1	Long only		Agreed, revision performed
206P	206	206	GWP	Across-Rot	11\$	11Y	3 4	1	1 1	3/4 A394-T0_F	Punched	1 1	1	Long only	0	0	0	0 0	0	0		36	206P	206	206 GV	P Across-	Rot 11	\$ 11Y	3 .	4 1	1 1	V4 A394-T0_Punch	1	1 1	Long only		
217P	217	217	GWP	Across-Rot	11Y	110P	3 4	1	1 1	3/4 A394-T0_F	Punched	1 1	1	Long only	0	0	0	0 0	0	0		38	217P	217	217 G	P Across-	Rot 11	S 110 Y	3 .	4 1	1 1	14 A394-T0_Punch	1	1 1	Long only		Agreed, revision performed
218sP	2185	218bm	GWP	XY-Symmetry	2P	3P	1 4	1	1 1	3/4 A394-T0_F	Punched	0 0	0	Continuous	0	0	0	0 0	0	0		40	218sP	2185	218bm G1	/P XY-Symi	metre 2P	P 3P	1 .	4 1	1 1	V4 A394-T0_Punch	0	0 0	Continuos		
218bP	218b	218bm	GWP	X-Symmetry	2P	2.5\$	1 4	1	1 1	3/4 A394-T0_F	Punched	0 0	0	Continuous	0	0	0	0 0	0	0		44	218bP	218b	218bm G	/P X-Symm	netry 21	P 2.5S	1	4 1	1 1	V4 A394-T0_Punch	0	0 0	Continuos		
218 cP	218c	218bm	GWP	X-Symmetry	2.5\$	2Y	1 4	1	1 1	3/4 A394-T0_F	Punched	0 0	0	Continuous	0	0	0	0 0	0	0		46	218cP	218c	2186m GV	/P X-Symm	vetry 2.5	S 2Y	1 .	4 1	1 1	V4 A394-T0_Punch	0	0 0	Continuos	e	
218dP	218d	218bm	GWP	X-Symmetry	3P	3.58	1 4	1	1 1	3/4 A394-T0_F	Punched	0 0	0	Continuous	0	0	0	0 0	0	0		48	218dP	218d	218bm G\	/P X-Symm	netry 3P	P 3.5S	1	4 1	1 1	V4 A334-T0_Punch	0	0 0	Continuos	d la	
218eP	218e	218bm	GWP	X-Symmetry	3.5\$	3Y	1 4	1	1 1	3/4 A394-T0_F	Punched	0 0	0	Continuous	0	0	0	0 0	0	0		50	218eP	218e	218bm G	/P X-Symm	netry 3.5	is 3Y	1	4 1	1 1	V4 A394-T0_Punch	0	0 0	Continuos	d	
218fP	218f	218bm	GWP	X-Symmetry	2.5\$	1P	1 4	1	1 1	3/4 A334-T0_F	Punched	0 0	0	Continuous	0	0	0	0 0	0	0		52	218fP	218f	218bm G\	/P X-Symm	hetry 2.5	iS 1P	1	4 1	1 1	V4 A334-T0_Punch	0	0 0	Continuos	e	
218gP	218g	218bm	GWP	XY-Symmetry	3P	2.5%	1 4	1	1 1	3/4 A394-T0_F	Punched	0 0	0	Continuous	0	0	0	0 0	0	0		54	218gP	218g	218bm G1	/P XY-Symi	metr 31	P 2.58	1	4 1	1 1	V4 A394-T0_Punch	0	0 0	Continuos	a la	
218hP	218h	218bm	GWP	XY-Symmetry	2P	3.58	1 4	1	1 1	3/4 A394-T0_F	Punched	0 0	0	Continuous	0	0	0	0 0	0	0		58	218hP	218h	218bm G	/P XY-Sym	metr 21	P 3.5S	1 .	4 1	1 1	V4 A394-T0_Punch	0	0 0	Continuos	a	
254iP	254i	254	XARM	XY-Symmetry	200P	2405	1 4	1	1 1	3/4 A394-T0_F	Punched	11 4	1	Both	0	0	0	0 0	0	0		62	254iP	254i	254 XA	RM XY-Symi	metr 200	0P 2403	1	4 1	1 1	V4 A394-T0_Punch	11	4 1	Both		
254iiP	254ii	254	XARM	XY-Symmetry	240S	250P	1 4	1	1 1	3/4 A394-T0_F	Punched	0 4	0	Continuous	0	0	0	0 0	0	0		66	254iiP	254ii	254 XA	RM XY-Symi	metry 240	0S 250F	1	4 1	1 1	V4 A394-T0_Punch	0	4 0	Continuos	a la	
254iiiP	254iii	254bm	XARM	XY-Symmetry	250P	2605	1 4	1	1 1	3/4 A394-T0_F	Punched	0 3	0	Continuous	0	0	0	0 0	0	0		70	254iiiP	254iii	254bm XA	RM XY-Symi	metre 250	0P 2603	1	4 1	1 1	V4 A394-T0_Punch	0	3 0	Continuos		
254ivP	254iv	254bm	XARM	XY-Symmetry	260S	270\$	1 4	2.2	1 1	3/4 A394-T0_F	Punched	0 3	0	Continuous	0	0	0	0 0	0	0		74	254ivP	254iv	254bm XA	RM XY-Symi	metre 260	08 2708	1	4 2.21	1 1	V4 A394-T0_Punch	0	3 0	Continuos	<u>e</u>	
254vP	254v	254bm	XARM	XY-Symmetry	2705	2805	1 4	2.4	1 1	3/4 A394-T0_F	Punched	0 3	0	Continuous	0	0	0	0 0	0	0		78	254vP	254v	254bm XA	RM XY-Sym	metri 270	08 2808	1	4 2.43	1 1	V4 A394-T0_Punch	0	3 0	Continuos		
254viP	254vi	254bm	XARM	XY-Symmetry	2805	300P	1 4	7.3	1 1	3/4 A394-T0_F	Punched	6 3	1	Both	0	0	0	0 0	0	0		82	254viP	254vi	254bm XA	RMXY-Sym	metri 280	0S 300F	1	4 7.35	1 1	V4 A394-T0_Punch	6	3 1	Both		
221iP	221i	221	XARM	XY-Symmetry	100P	2205	1 4	1	1 1	3/4 A394-T0_F	Punched	6 3	1	Both	0	0	0	0 0	0	0		86	221iP	221i	221 XA	RM XY-Symi	metri 100	P 2203	1	4 1	1 1	V4 A334-T0_Punch	6	3 1	Both		
221iiP	221ii	221	XARM	XY-Symmetry	220S	230P	1 4	1	1 1	3/4 A394-T0_F	Punched	6 3	1	Both	0	0	0	0 0	0	0		30	221iiP	221ii	221 XA	RMXY-Sym	metri 220	0S 230F	1	4 1	1 1	V4 A394-T0_Punch	6	3 1	Both		
246iP	246i	246	XARM	XY-Symmetry	230P	260HS	2 4	1	1 1	3/4 A394-T0_F	Punched	2 2	1	Long only	0	0	0	0 0	0	0		34	246iP	246i	246 XA	RMXY-Sym	metri 230	0P 260H	\$ 2	4 1	1 1	V4 A394-T0_Punch	2	2 1	Long only	•	
246iiF	246ii	246	XARM	XY-Symmotry	260HS	300P	2 5	; 1	1 1	3/4 A394-TO_F	Punched	2 2	1	Long only	0	0	0	0 0	0	0		98	246iiP	246ii	246 XA	RMXY-Symi	metri 260	HS 300F	2	5 1	1 1	44 A394-TO_Punch	3	1 1	Long only	۰ ۵	Agreed to Rest=4 and #bolts=3, revisions performed. #holes = 2 left unchanged because of oblique redundant at member midnoist
256P	256	256	XARM	XY-Symmetry	200P	240Y	2 5	0.5	0.5 0.5	3/4 A394-T0_F	Punched	2 1	1	Short only	0	0	0	0 0	0	0		102	256P	256	256 XA	RMXY-Sym	metre 200	0P 2401	1 2	4 0.5	0.5 0.5	14 A394-T0_Punch	2	1 1	Short onl	one end connects to gusset	good catch, agreed.

Show Your Work!

QUESTIONS?